Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Environ Sci Technol ; 57(25): 9342-9352, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294896

RESUMO

Persistent organic pollutants (POPs) are recognized as pollutants of global concern, but so far, information on the trends of legacy POPs in the waters of the world has been missing due to logistical, analytical, and financial reasons. Passive samplers have emerged as an attractive alternative to active water sampling methods as they accumulate POPs, represent time-weighted average concentrations, and can easily be shipped and deployed. As part of the AQUA-GAPS/MONET, passive samplers were deployed at 40 globally distributed sites between 2016 and 2020, for a total of 21 freshwater and 40 marine deployments. Results from silicone passive samplers showed α-hexachlorocyclohexane (HCH) and γ-HCH displaying the greatest concentrations in the northern latitudes/Arctic Ocean, in stark contrast to the more persistent penta (PeCB)- and hexachlorobenzene (HCB), which approached equilibrium across sampling sites. Geospatial patterns of polychlorinated biphenyl (PCB) aqueous concentrations closely matched original estimates of production and use, implying limited global transport. Positive correlations between log-transformed concentrations of Σ7PCB, ΣDDTs, Σendosulfan, and Σchlordane, but not ΣHCH, and the log of population density (p < 0.05) within 5 and 10 km of the sampling sites also supported limited transport from used sites. These results help to understand the extent of global distribution, and eventually time-trends, of organic pollutants in aquatic systems, such as across freshwaters and oceans. Future deployments will aim to establish time-trends at selected sites while adding to the geographical coverage.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Bifenilos Policlorados/análise , Monitoramento Ambiental/métodos , Hexaclorobenzeno/análise , Água Doce , Poluentes Atmosféricos/análise , Praguicidas/análise , Hidrocarbonetos Clorados/análise
2.
Environ Sci Technol ; 56(10): 6391-6398, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35420785

RESUMO

Passive sampling devices (PSDs) offer key benefits for monitoring chemical water quality, but the uptake process of PSDs for hydrophilic compounds still needs to be better understood. Determining mass transfer coefficients of the water boundary layer (kw) during calibration experiments and in situ monitoring would contribute toward achieving this; it allows for combining calibration data obtained at different temperature and hydrodynamic conditions and facilitate the translation of laboratory-derived calibration data to field exposure. This study compared two kw measurement methods applied to extraction disk housings (Chemcatcher), namely, alabaster dissolution and dissipation of performance reference compounds (PRCs) from silicone. Alabaster- and PRC-based kw were measured at four flow velocities (5-40 cm s-1) and two temperatures (11 and 20 °C) in a channel system. Data were compared using a relationship based on Sherwood, Reynolds, and Schmidt numbers. Good agreement was observed between data obtained at both temperatures, and for the two methods. Data were well explained by a model for mass transfer to a flat plate under laminar flow. It was slightly adapted to provide a semi-empirical model accounting for the effects of housing design on hydrodynamics. The use of PRC-spiked silicone to obtain in situ integrative kw for Chemcatcher-type PSDs is also discussed.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Sulfato de Cálcio , Calibragem , Monitoramento Ambiental/métodos , Hidrodinâmica , Silicones , Poluentes Químicos da Água/química
3.
Anal Bioanal Chem ; 408(4): 1067-78, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26637214

RESUMO

In this work, a method combining polar organic chemical integrative samplers (POCIS) and ultraperformance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was assessed for the determination of two corrosion inhibitors (benzotriazole and methylbenzotriazole), seven pesticides (atrazine, diuron, isoproturon, linuron, metolachlor, penconazole, terbuthylazine), and four pharmaceuticals (carbamazepine, diclofenac, metformin, sulfamethoxazole) in river water. As a first step, two POCIS sorbents, hydrophilic-lipophilic balance (HLB) and Strata X-CW, were compared. The comparison of the uptake profiles of the studied compounds showed that the HLB sorbent provides better uptake (higher sampled amount and better linearity) than Strata X-CW except for the basic compound metformin. Since the sampling rate (R s) of POCIS depends on environmental factors, seven compounds were evaluated as potential performance reference compounds (PRCs) through kinetic experiments. Deisopropylatrazine-d5 (DIA-d5) and, as far as we know, for the first time 4-methylbenzotriazole-d3 showed suitable desorption. The efficiency of both compounds to correct for the effect of water velocity was shown using a channel system in which POCIS were exposed to 2 and 50 cm s(-1). Finally, POCIS were deployed upstream and downstream of agricultural wine-growing and tree-growing areas in the Lienne River and the Uvrier Canal (Switzerland). The impact of the studied areas on both streams could be demonstrated.

4.
Chimia (Aarau) ; 68(11): 778-82, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26508484

RESUMO

This study shows the efficiency of passive sampling to reveal industrial and agricultural pollution trends. Two practical applications for nonpolar and polar contaminants are presented. Low-density polyethylene (LDPE) samplers were deployed for one year in the Venoge River (VD) to monitor indicator PCBs (iPCBs, IUPAC nos. 28, 52, 101, 138, 153 and 180). The results showed that the impact of PCB emissions into the river is higher in summer than in other seasons due to the low flow rate of the river during this period. Polar organic chemical integrative samplers (POCIS) were deployed for 4 months in the Sion-Riddes canal (VS) to investigate herbicides (terbuthylazine, diuron and linuron). Desisopropylatrazine-d5 (DIA-d5) was tested as a performance reference compound (PRC) to estimate aqueous concentration. The results showed an increase of water contamination due to the studied agricultural area. The maximal contamination was observed in April and corresponds to the period of herbicide application on the crops.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/análise , Agricultura , Herbicidas , Compostos Orgânicos , Rios , Suíça
5.
J Hazard Mater ; 475: 134853, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878431

RESUMO

Passive samplers are key tools to sample hydrophilic micropollutants in water. Two main approaches address the influence of hydrodynamics: (1) determining site-specific sampling rate (RS) by characterizing kw, the mass transfer coefficient of the water-boundary layer (WBL), and (2) reducing WBL impact using a diffusive material to control the uptake. The first requires calibration data and the second has only been achieved using fragile diffusive material. This study assesses the transfer of hydrophilic contaminants through polytetrafluoroethylene (PTFE; 30 µm thick), a new membrane material with lower sorption than commonly used polyethersulfone (PES). Combined for the first time in a Chemcatcher-like configuration, we calibrated the modified samplers for 44 micropollutants to provide RS - kw relationships for in-situ RS determination (approach 1). Micropollutants accumulated over 2000 times more on the sorbent than on PTFE. PTFE-based RS (0.027 to 0.300 L day-1) were 2.5 higher than previously reported with PES. Membrane property measurements (porosity, tortuosity) indicated that accumulation is primarily controlled by the membrane. Extrapolation indicated that using thicker PTFE membranes (≥ 100 µm) would shift uptake control entirely to the membrane in river conditions (approach 2). This finding could enable RS prediction based on contaminants properties, thus representing a significant advancement in passive sampling.

6.
Sci Total Environ ; 918: 170501, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38307289

RESUMO

Bio-based fertilizers (BBFs) produced from organic waste have the potential to reduce societal dependence on limited and energy-intensive mineral fertilizers. BBFs, thereby, contribute to a circular economy for fertilizers. However, BBFs can contain plastic fragments and hazardous additives such as phthalate plasticizers, which could constitute a risk for agricultural soils and the environment. This study assessed the exposure associated with plastic and phthalates in BBFs from three types of organic wastes: agricultural and food industry waste (AgriFoodInduWaste), sewage sludge (SewSludge), and biowaste (i.e., garden, park, food and kitchen waste). The wastes were associated with various treatments like drying, anaerobic digestion, and vermicomposting. The number of microplastics (0.045-5 mm) increased from AgriFoodInduWaste-BBFs (15-258 particles g-1), to SewSludge-BBFs (59-1456 particles g-1) and then to Biowaste-BBFs (828-2912 particles g-1). Biowaste-BBFs mostly contained packaging plastics (e.g., polyethylene terephthalate), with the mass of plastic (>10 g kg-1) exceeding the EU threshold (3 g kg-1, plastics >2 mm). Other BBFs mostly contained small (< 1 mm) non-packaging plastics in amounts below the EU limit. The calculated numbers of microplastics entering agricultural soils via BBF application was high (107-1010 microplastics ha-1y-1), but the mass of plastic released from AgriFoodInduWaste-BBFs and SewSludge-BBFs was limited (< 1 and <7 kg ha-1y-1) compared to Biowaste-BBFs (95-156 kg ha-1y-1). The concentrations of di(2-ethylhexyl)phthalate (DEHP; < 2.5 mg kg-1) and phthalate transformation products (< 8 mg kg-1) were low (< benchmark of 50 mg kg-1 for DEHP), attributable to both the current phase-out of DEHP as well as phthalate degradation during waste treatment. The Biowaste-BBF exposed to vermicomposting indicated that worms accumulated phthalate transformation products (4 mg kg-1). These results are overall positive for the implementation of the studied AgriFoodInduWaste-BBFs and SewSludge-BBFs. However, the safe use of the studied Biowaste-BBFs requires reducing plastic use and improving sorting methods to minimize plastic contamination, in order to protect agricultural soils and reduce the environmental impact of Biowaste-BBFs.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Plastificantes/análise , Plásticos , Fertilizantes , Microplásticos , Solo , Esgotos , Dibutilftalato
7.
Sci Total Environ ; 871: 162037, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740052

RESUMO

When monitoring water quality with hydrophilic integrative passive sampling devices, it is crucial to use accurate sampling rates (RS) that account for exposure conditions such as hydrodynamics. This study aims at calibrating Chemcatcher-like passive samplers - styrene-divinylbenzene reverse phase sulfonate (SDB-RPS) extraction disk covered by a polyethersulfone (PES) membrane - at four water flow velocities (5 to 40 cm s-1) in a channel system. First, the four hydrodynamic conditions were characterized by measuring the mass transfer coefficients of the water boundary layer (kw) at the surface of the samplers using the alabaster dissolution method. Then, fifty-six samplers were deployed in the channels and exposed for 7 different intervals varying from 1 to 21 days. Thus, RS were determined at four different kw for 44 hydrophilic compounds, ranging from 0.015 to 0.115 L day-1. Relationships were established between kw and RS using models for mixed rate control by the membrane and the water boundary layer. The estimated parameters of those relationships are suitable for the determination of accurate RS when kw is measured in situ, for example by co-deploying silicone disks spiked with performance and reference compounds (PRC) as implemented in Part B.

8.
Sci Total Environ ; 871: 161937, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736390

RESUMO

Integrative passive sampling is particularly useful in the monitoring of hydrophilic contaminants in surface water, but the impact of hydrodynamics on contaminant uptake still needs to be better considered. In part A (Glanzmann et al., 2023), Chemcatcher-like hydrophilic samplers (i.e., SDB-RPS extraction disks covered by PES microporous membranes) were calibrated to determine the sampling rates RS of 44 hydrophilic contaminants (pesticides, pharmaceuticals, industrial products) taking into account the hydrodynamic conditions. In this study, Chemcatcher-like passive sampling devices that allowed co-deploying hydrophilic samplers and performance reference compounds (PRC)-spiked silicone disks were tested in a Swiss river with intermediate water velocities (5-50 cm s-1, 23 cm s-1 on average) during 11 consecutive 14-day periods. The PRC dissipation from silicone disks - combined with the calibration data from part A - allowed to determine in-situ RS that took into account hydrodynamic conditions. The obtained aqueous time-weighted average (TWA) concentrations were found to be robust with good concordance between duplicates (mean quotient of 1.16 between the duplicates). For most measurements (76 %), TWA concentrations showed no major difference (20 cm s-1). RS from the literature (RS,LIT) - obtained at water velocities between 8 and 37 cm s-1 - were also shown to provide comparable TWA concentrations in the studied hydrodynamic conditions (average water velocity of 24 cm s-1). The estimated errors due to the use of RS,MAX or RS,LIT rather than in-situ RS are given as a function of the water velocity to determine in which conditions the developed method is required (or not) in monitoring programs.

9.
Environ Sci Pollut Res Int ; 30(31): 77819-77829, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37266788

RESUMO

The issue of microplastic (MP) litter in the aquatic environment and its capability of accumulating and/or releasing pollutants has been brought to light in recent years. Biodegradable plastics have been proposed as one of the different solutions to decrease environmental input of discarded plastics; however, their ability to accumulate and release pollutants once in the marine environment has not been assessed yet. In this study, we compare the accumulation and the release of a wide range of compounds by biodegradable (polyhydroxyalkanoates (PHA) and polybutylene succinate (PBS)) and conventional (polyethylene (PE)) MPs following exposure to natural seawater for 64 days. We quantified polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organophosphorus flame retardants (PFRs), phthalates, and alternative plasticizers in MPs, before and after exposure. Results indicated that PBS- and PHA-MPs accumulated the largest amount of PAHs and PFRs, respectively. Leaching of PFRs and plasticizers was observed for all polymers and was approximately twofold greater for PE- when compared to PBS- and PHA-MPs. Overall, our study suggests that biodegradable MPs may release less additives and accumulate a larger amount of contaminants from seawater compared to conventional ones: these findings may have implications on the risk assessment of biodegradable polymers for marine biota; and on potential widespread adoption of these types of plastics.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Plásticos , Microplásticos , Plastificantes , Polímeros , Hidrocarbonetos Policíclicos Aromáticos/análise , Polietileno , Poluentes Químicos da Água/análise
10.
Forensic Sci Int ; 328: 111035, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34634691

RESUMO

Forensic soil examination has a well-established foundation in forensic science, this is in part due to the widely varied and complex nature of soil. Within this domain, mineral suite studies are a commonly utilized tool in soil examination. However, statistical or probabilistic approaches towards the interpretation of results from such analysis are lacking and this study aims to fill that gap. Soil samples from four different locations in the city of Lausanne, Switzerland were sampled and their mineral fractions, light and heavy of size between 90 and 180 µm, were studied utilizing microscopical methods. First, the light minerals were identified and counted by employing scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). Second, the heavy minerals were identified and counted manually under a polarized light microscope (PLM). The resulting count data were subjected to various multivariate statistical treatments such as principal components analysis (PCA), hierarchical clustering analysis (HCA), and linear discriminant analysis (LDA). These methods assist in identifying pertinent variables and subsequently in building various classification models. The validities of these models were then tested and evaluated using blind tests. Finally, these methods demonstrate how a probabilistic approach can be taken in the interpretation of the results to answer source level questions.

11.
Chemosphere ; 279: 130598, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33901895

RESUMO

A first test of the field capabilities of a novel in situ sampling technique combining active and passive sampling (APS) was conducted in the sea. The proof-of-concept device uses a pump to draw water into a diffusion cell where dissolved target substances are accumulated onto sorbents which are selective for different classes of contaminants (i.e., metal cations, polar and non-polar organic compounds), simultaneously. A controlled laminar flow established in the diffusion cell enables measurements of contaminant concentrations that are fully independent from the hydrodynamic conditions in the bulk solution. APS measurements were consistent with those obtained using conventional passive sampling techniques such as organic diffusive gradients in thin films (o-DGT) and silicone rubber (SR) samplers (generally < 40% difference), taking into account the prevailing hydrodynamic conditions. The use of performance reference compounds (PRC) for hydrophobic contaminants provided additional information. Field measurements of metal ions in seawater showed large variability due to issues related to the device configuration. An improved field set-up deployed in supplementary freshwater mesocosm experiments provided metal speciation data that was consistent with passive sampling measurements (DGT), taking into account the hydrodynamic conditions. Overall, the results indicate that the APS technique provides a promising approach for the determination of a wide range of contaminants simultaneously, and independently from the hydrodynamic conditions in the bulk solution.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Difusão , Compostos Orgânicos , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
12.
Environ Pollut ; 252(Pt A): 767-776, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31200202

RESUMO

Between 1920 and 1967, approximatively 8200 tons of ammunition waste were dumped into some Swiss lakes. This study is part of the extensive historical and technical investigations performed since 1995 by Swiss authorities to provide a risk assessment. It aims to assess whether explosive monitoring by passive sampling is feasible in lake-bottom waters. Polar organic chemical integrative sampler (POCIS) and Chemcatcher were first calibrated in a channel system supplied with continuously refreshed lake water spiked with two nitroamines (HMX and RDX), one nitrate ester (PETN), and six nitroaromatics (including TNT). Exposure parameters were kept as close as possible to the ones expected at the bottom of two affected lakes. Sixteen POCIS and Chemcatcher were simultaneously deployed in the channel system and removed in duplicates at 8 different intervals over 21 days. Sorbents and polyethersulfone (PES) membranes were separately extracted and analyzed by UPLC-MS/MS. When possible, a three-compartment model was used to describe the uptake of compounds from water, over the PES membrane into the sorbent. Uptake of target compounds by sorbents was shown not to approach equilibrium during 21 days. However, nitroaromatics strongly accumulated in PES, thus delaying the transfer of these compounds to sorbents (lag-phase up to 9 days). Whereas sampling rate (RS) of nitroamines were in the range of 0.06-0.14 L day-1, RS of nitroaromatics were up to 10 times lower. As nitroaromatic accumulation in PES was integrative over 21 days, PES was used as receiving phase for these compounds. The samplers were then deployed at lake bottoms. To ensure that exposure conditions were similar between calibration and field experiments, low-density polyethylene strips spiked with performance reference compounds were co-deployed in both experiments and dissipation data were compared. Integrative concentrations of explosives measured in the lakes confirmed results obtained by previous studies based on grab sampling.


Assuntos
Azocinas/análise , Monitoramento Ambiental/métodos , Substâncias Explosivas/análise , Triazinas/antagonistas & inibidores , Trinitrotolueno/análise , Poluentes Químicos da Água/análise , Calibragem , Cromatografia Líquida , Cinética , Lagos/química , Compostos Orgânicos/análise , Polímeros/química , Sulfonas/química , Espectrometria de Massas em Tandem , Água/química
13.
Sci Total Environ ; 572: 794-803, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27528480

RESUMO

This study firstly aims to assess the field performances of low density polyethylene (LDPE) and silicone rubber (SR) samplers for the monitoring of polychlorinated biphenyls (PCBs) in water regarding the uptake, the sampling rate (RS) estimated by using performance reference compounds (PRCs) and the time-weighted average (TWA) concentrations. The second aim is to evaluate the efficiency of these samplers to investigate PCB sources (localization and imputation steps) using methods with and without PRCs to correct for the impact of water velocity on the uptake. Samplers spiked with PRCs were deployed in the outfalls of two PCB sources and at 8 river sites situated upstream and downstream of the outfalls. After 6weeks, the uptake of PCBs in the linear phase was equivalent in LDPE and SR but 5 times lower in LDPE for PCBs approaching equilibrium. PRC-based RS and water velocity (0.08 to 1.21ms-1) were well correlated in river (LDPE: R2=0.91, SR: R2=0.96) but not in outfalls (higher turbulences and potential release of PRCs to air). TWA concentrations obtained with SR were slightly higher than those obtained with LDPE (factor 1.4 to 2.6 in river) likely because of uncertainty in sampler-water partition coefficient values. Concentrations obtained through filtration and extraction of water samples (203L) were 1.6 and 5.1 times higher than TWA concentrations obtained with SR and LDPE samplers, respectively. PCB sources could efficiently be localized when PRCs were used (increases of PCB loads in river) but the impact of high differences of water velocity was overcorrected (leading sometimes to false positives and negatives). Increases of PCB loads in the river could not be entirely imputed to the investigated sources (underestimation of PCBs contributing to the load increases). A method without PRCs (relationship between uptake and water velocity) appeared to be a good complementary method for LDPE.


Assuntos
Monitoramento Ambiental/instrumentação , Bifenilos Policlorados/análise , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Desenho de Equipamento , Polietileno , Elastômeros de Silicone , Suíça
14.
Chemosphere ; 118: 268-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25463250

RESUMO

This study aims to provide a passive sampling approach which can be routinely used to investigate polychlorinated biphenyl (PCB) sources in rivers. The approach consists of deploying low density polyethylene (LDPE) strips downstream and upstream of potential PCB sources as well as in their water discharges. Concentrations of indicator PCBs (iPCBs) absorbed in samplers (Cs) from upstream and downstream sites are compared with each other to reveal increases of PCB levels. Cs measured in water discharges are used to determine if released amounts of PCBs are compatible with increases revealed in the river. As water velocity can greatly vary along a river stretch and influences the uptake at each site in a different way, differences in velocity have to be taken into account to correctly interpret Cs. LDPE strips were exposed to velocities between 1.6 and 37 cm s−1 using a channel system built in the field. Relationships between velocity and Cs were established for each iPCB to determine the expected change in Cs due to velocity variations. For PCBs 28 and 52, this change does not exceed a factor 2 for velocity variations in the range from 1.6 to 100 cm s−1 (extrapolated data above 37 cm s−1). For PCBs 101, 138, 153 and 180, this change only exceeds a factor 2 in the case of large velocity variations. The approach was applied in the Swiss river Venoge to first conduct a primary investigation of potential PCB sources and then conduct thorough investigations of two suspected sources.


Assuntos
Monitoramento Ambiental/métodos , Bifenilos Policlorados/análise , Polietileno/química , Rios/química , Poluentes Químicos da Água/análise , Limite de Detecção , Modelos Químicos , Suíça , Água/química
15.
Sci Total Environ ; 499: 319-26, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25201819

RESUMO

One aim of this study is to determine the impact of water velocity on the uptake of indicator polychlorinated biphenyls (iPCBs) by silicone rubber (SR) and low-density polyethylene (LDPE) passive samplers. A second aim is to assess the efficiency of performance reference compounds (PRCs) to correct for the impact of water velocity. SR and LDPE samplers were spiked with 11 or 12 PRCs and exposed for 6 weeks to four different velocities (in the range of 1.6 to 37.7 cm s(-1)) in river-like flow conditions using a channel system supplied with river water. A relationship between velocity and the uptake was found for each iPCB and enables to determine expected changes in the uptake due to velocity variations. For both samplers, velocity increases from 2 to 10 cm s(-1), 30 cm s(-1) (interpolated data) and 100 cm s(-1) (extrapolated data) lead to increases of the uptake which do not exceed a factor of 2, 3 and 4.5, respectively. Results also showed that the influence of velocity decreased with increasing the octanol-water coefficient partition (log K(ow)) of iPCBs when SR is used whereas the opposite effect was observed for LDPE. Time-weighted average (TWA) concentrations of iPCBs in water were calculated from iPCB uptake and PRC release. These calculations were performed using either a single PRC or all the PRCs. The efficiency of PRCs to correct the impact of velocity was assessed by comparing the TWA concentrations obtained at the four tested velocities. For SR, a good agreement was found among the four TWA concentrations with both methods (average RSD<10%). Also for LDPE, PRCs offered a good correction of the impact of water velocity (average RSD of about 10 to 20%). These results contribute to the process of acceptance of passive sampling in routine regulatory monitoring programs.


Assuntos
Monitoramento Ambiental/métodos , Bifenilos Policlorados/análise , Rios/química , Movimentos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/instrumentação , Polietileno/química , Elastômeros de Silicone/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA