RESUMO
The first complete measurement of the ß-decay strength distribution of _{17}^{45}Cl_{28} was performed at the Facility for Rare Isotope Beams (FRIB) with the FRIB Decay Station Initiator during the second FRIB experiment. The measurement involved the detection of neutrons and γ rays in two focal planes of the FRIB Decay Station Initiator in a single experiment for the first time. This enabled an analytical consistency in extracting the ß-decay strength distribution over the large range of excitation energies, including neutron unbound states. We observe a rapid increase in the ß-decay strength distribution above the neutron separation energy in _{18}^{45}Ar_{27}. This was interpreted to be caused by the transitioning of neutrons into protons excited across the Z=20 shell gap. The SDPF-MU interaction with reduced shell gap best reproduced the data. The measurement demonstrates a new approach that is sensitive to the proton shell gap in neutron rich nuclei according to SDPF-MU calculations.
RESUMO
Isomer spectroscopy of heavy neutron-rich nuclei beyond the N=126 closed shell has been performed for the first time at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. New millisecond isomers have been identified at low excitation energies, 985.3(19) keV in ^{213}Tl and 874(5) keV in ^{215}Tl. The measured half-lives of 1.34(5) ms in ^{213}Tl and 3.0(3) ms in ^{215}Tl suggest spins and parities 11/2^{-} with the single proton-hole configuration πh_{11/2} as leading component. They are populated via E1 transitions by the decay of higher-lying isomeric states with proposed spin and parity 17/2^{+}, interpreted as arising from a single πs_{1/2} proton hole coupled to the 8^{+} seniority isomer in the ^{A+1}Pb cores. The lowering of the 11/2^{-} states is ascribed to an increase of the πh_{11/2} proton effective single-particle energy as the second νg_{9/2} orbital is filled by neutrons, owing to a significant reduction of the proton-neutron monopole interaction between the πh_{11/2} and νg_{9/2} orbitals. The new ms isomers provide the first experimental observation of shell evolution in the almost unexplored N>126 nuclear region below doubly magic ^{208}Pb.
RESUMO
The root mean square radii of the proton density distribution in ^{16-24}O derived from measurements of charge changing cross sections with a carbon target at â¼900A MeV together with the matter radii portray thick neutron skin for ^{22-24}O despite ^{22,24}O being doubly magic. Imprints of the shell closures at N=14 and 16 are reflected in local minima of their proton radii that provide evidence for the tensor interaction causing them. The radii agree with ab initio calculations employing the chiral NNLO_{sat} interaction, though skin thickness predictions are challenged. Shell model predictions agree well with the data.
Assuntos
Nêutrons , Prótons , CarbonoRESUMO
The ß-delayed one- and two-neutron emission probabilities (P_{1n} and P_{2n}) of 20 neutron-rich nuclei with N≥82 have been measured at the RIBF facility of the RIKEN Nishina Center. P_{1n} of ^{130,131}Ag, ^{133,134}Cd, ^{135,136}In, and ^{138,139}Sn were determined for the first time, and stringent upper limits were placed on P_{2n} for nearly all cases. ß-delayed two-neutron emission (ß2n) was unambiguously identified in ^{133}Cd and ^{135,136}In, and their P_{2n} were measured. Weak ß2n was also detected from ^{137,138}Sn. Our results highlight the effect of the N=82 and Z=50 shell closures on ß-delayed neutron emission probability and provide stringent benchmarks for newly developed macroscopic-microscopic and self-consistent global models with the inclusion of a statistical treatment of neutron and γ emission. The impact of our measurements on r-process nucleosynthesis was studied in a neutron star merger scenario. Our P_{1n} and P_{2n} have a direct impact on the odd-even staggering of the final abundance, improving the agreement between calculated and observed Solar System abundances. The odd isotope fraction of Ba in r-process-enhanced (r-II) stars is also better reproduced using our new data.
RESUMO
Proton capture on the excited isomeric state of ^{26}Al strongly influences the abundance of ^{26}Mg ejected in explosive astronomical events and, as such, plays a critical role in determining the initial content of radiogenic ^{26}Al in presolar grains. This reaction also affects the temperature range for thermal equilibrium between the ground and isomeric levels. We present a novel technique, which exploits the isospin symmetry of the nuclear force, to address the long-standing challenge of determining proton-capture rates on excited nuclear levels. Such a technique has in-built tests that strongly support its veracity and, for the first time, we have experimentally constrained the strengths of resonances that dominate the astrophysical ^{26m}Al(p,γ)^{27}Si reaction. These constraints demonstrate that the rate is at least a factor â¼8 lower than previously expected, indicating an increase in the stellar production of ^{26}Mg and a possible need to reinvestigate sensitivity studies involving the thermal equilibration of ^{26}Al.
RESUMO
We report the measurement of reaction cross sections (σ_{R}^{ex}) of ^{27,29}F with a carbon target at RIKEN. The unexpectedly large σ_{R}^{ex} and derived matter radius identify ^{29}F as the heaviest two-neutron Borromean halo to date. The halo is attributed to neutrons occupying the 2p_{3/2} orbital, thereby vanishing the shell closure associated with the neutron number N=20. The results are explained by state-of-the-art shell model calculations. Coupled-cluster computations based on effective field theories of the strong nuclear force describe the matter radius of ^{27}F but are challenged for ^{29}F.
RESUMO
The most remote isotope from the proton dripline (by 4 atomic mass units) has been observed: ^{31}K. It is unbound with respect to three-proton (3p) emission, and its decays have been detected in flight by measuring the trajectories of all decay products using microstrip detectors. The 3p emission processes have been studied by the means of angular correlations of ^{28}S+3p and the respective decay vertices. The energies of the previously unknown ground and excited states of ^{31}K have been determined. This provides its 3p separation energy value S_{3p} of -4.6(2) MeV. Upper half-life limits of 10 ps of the observed ^{31}K states have been derived from distributions of the measured decay vertices.
RESUMO
Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R^{3}B/LAND setup with incident beam energies in the range of 300-450 MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type ^{A}O(p,2p)^{A-1}N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.
RESUMO
The emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}â^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs. On the other hand, a significant competition of a sequential branch is found in the decay ^{21}O(-1n)^{20}O^{*}â^{18}O+n+n, attributed to its formation through the knockout of a deeply bound neutron that breaks the ^{16}O core and reduces the number of pairs.
RESUMO
In this Letter, the observation of two previously unknown isotopes is presented for the first time: ^{72}Rb with 14 observed events and ^{77}Zr with one observed event. From the nonobservation of the less proton-rich nucleus ^{73}Rb, we derive an upper limit for the ground-state half-life of 81 ns, consistent with the previous upper limit of 30 ns. For ^{72}Rb, we have measured a half-life of 103(22) ns. This observation of a relatively long-lived odd-odd nucleus, ^{72}Rb, with a less exotic odd-even neighbor, ^{73}Rb, being unbound shows the diffuseness of the proton drip line and the possibility of sandbanks to exist beyond it. The ^{72}Rb half-life is consistent with a 5^{+}â5/2^{-} proton decay with an energy of 800-900 keV, in agreement with the atomic mass evaluation proton-separation energy as well as results from the finite-range droplet model and shell model calculations using the GXPF1A interaction. However, we cannot explicitly exclude the possibility of a proton transition between 9^{+}(^{72}Rb)â9/2^{+}(^{71}Kr) isomeric states with a broken mirror symmetry. These results imply that ^{72}Kr is a strong waiting point in x-ray burst rp-process scenarios.
RESUMO
The ß-decay half-lives of 94 neutron-rich nuclei ^{144-151}Cs, ^{146-154}Ba, ^{148-156}La, ^{150-158}Ce, ^{153-160}Pr, ^{156-162}Nd, ^{159-163}Pm, ^{160-166}Sm, ^{161-168}Eu, ^{165-170}Gd, ^{166-172}Tb, ^{169-173}Dy, ^{172-175}Ho, and two isomeric states ^{174m}Er, ^{172m}Dy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of ß-decay half-lives are observed at neutron-number N=97 for _{58}Ce, _{59}Pr, _{60}Nd, and _{62}Sm, and N=105 for _{63}Eu, _{64}Gd, _{65}Tb, and _{66}Dy. Features in the data mirror the interplay between pairing effects and microscopic structure. r-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system.
RESUMO
Proton radii of ^{12-19}C densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target are reported. A thick neutron surface evolves from â¼0.5 fm in ^{15}C to â¼1 fm in ^{19}C. The halo radius in ^{19}C is found to be 6.4±0.7 fm as large as ^{11}Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.
RESUMO
The ß-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with ß-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region Nâ³126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the ß-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.
RESUMO
We present the mass excesses of (52-57)Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85(59)((-54)(+0)) MeV and -21.0(1.3) MeV, respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A = 56 mass chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted by the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We find that, in contrast to previous studies, neither strong neutrino cooling nor strong heating occurs in this layer. We conclude that Urca cooling in the outer crusts of accreting neutron stars that exhibit superbursts or high temperature steady-state burning, which are predicted to be rich in A≈56 nuclei, is considerably weaker than predicted. Urca cooling must instead be dominated by electron capture on the small amounts of adjacent odd-A nuclei contained in the superburst and high temperature steady-state burning ashes. This may explain the absence of strong crust Urca cooling inferred from the observed cooling light curve of the transiently accreting x-ray source MAXI J0556-332.
RESUMO
We present results from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. We report the first mass measurements of ^{48}Ar and ^{49}Ar and find atomic mass excesses of -22.28(31) MeV and -17.8(1.1) MeV, respectively. These masses provide strong evidence for the closed shell nature of neutron number N=28 in argon, which is therefore the lowest even-Z element exhibiting the N=28 closed shell. The resulting trend in binding-energy differences, which probes the strength of the N=28 shell, compares favorably with shell-model calculations in the sd-pf shell using SDPF-U and SDPF-MU Hamiltonians.
RESUMO
Previously unknown isotopes (30)Ar and (29)Cl have been identified by measurement of the trajectories of their in-flight decay products (28)S+p+p and (28)S+p, respectively. The analysis of angular correlations of the fragments provided information on decay energies and the structure of the parent states. The ground states of (30)Ar and (29)Cl were found at 2.25(-0.10)(+0.15) and 1.8±0.1 MeV above the two- and one-proton thresholds, respectively. The lowest states in (30)Ar and (29)Cl point to a violation of isobaric symmetry in the structure of these unbound nuclei. The two-proton decay has been identified in a transition region between simultaneous two-proton and sequential proton emissions from the (30)Ar ground state, which is characterized by an interplay of three-body and two-body decay mechanisms. The first hint of a fine structure of the two-proton decay of (30)Ar*(2(+)) has been obtained by detecting two decay branches into the ground and first-excited states of the (28)S fragment.
RESUMO
The first determination of radii of point proton distribution (proton radii) of (12-17)B from charge-changing cross sections (σ(CC)) measurements at the FRS, GSI, Darmstadt is reported. The proton radii are deduced from a finite-range Glauber model analysis of the σ(CC). The radii show an increase from ¹³B to ¹7B and are consistent with predictions from the antisymmetrized molecular dynamics model for the neutron-rich nuclei. The measurements show the existence of a thick neutron surface with neutron-proton radius difference of 0.51(0.11) fm in ¹7B.
RESUMO
A measurement of the reduced transition probability for the excitation of the ground state to the first 2+ state in 104Sn has been performed using relativistic Coulomb excitation at GSI. 104Sn is the lightest isotope in the Sn chain for which this quantity has been measured. The result is a key point in the discussion of the evolution of nuclear structure in the proximity of the doubly magic nucleus 100Sn. The value B(E2; 0+ â 2+) = 0.10(4) e2b2 is significantly lower than earlier results for 106Sn and heavier isotopes. The result is well reproduced by shell model predictions and therefore indicates a robust N = Z = 50 shell closure.
RESUMO
We present results from time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory that are relevant for neutron star crust models. The masses of 16 neutron-rich nuclei in the scandium-nickel range were determined simultaneously, with the masses of (61)V, (63)Cr, (66)Mn, and (74)Ni measured for the first time with mass excesses of -30.510(890) MeV, -35.280(650) MeV, -36.900(790) MeV, and -49.210(990) MeV, respectively. With these results the locations of the dominant electron capture heat sources in the outer crust of accreting neutron stars that exhibit super bursts are now experimentally constrained. We find the experimental Q value for the (66)Feâ(66)Mn electron capture to be 2.1 MeV (2.6σ) smaller than predicted, resulting in the transition occurring significantly closer to the neutron star surface.
RESUMO
The ASMBS recommends that patients should be provided with educational materials to improve informed consent about bariatric surgery. Massive online open courses (MOOCs) are learning sources which are free, online, and available to people in remote situations. A French language MOOC regarding preparation for obesity surgery targets patients, as well as HCP, and people curious about this treatment. The patients' knowledge and skills after completion of the 5-week learning sessions (evaluated with semi-direct interviews) improved. Soft skills such as feeling empowered to ask questions to their HCP and explaining their plan to their relatives improved. This study suggests that MOOC can be a resource to improve knowledge and soft skills in patients for a better consent to surgery and follow-up.