Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Integr Neurosci ; 23(2): 41, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38419452

RESUMO

BACKGROUND: Different types of stress inflicted in early stages of life elevate the risk, among adult animals and humans, to develop disturbed emotional-associated behaviors, such as hyperphagia or depression. Early-life stressed (ELS) adults present hyperactivity of the hypothalamus-pituitary-adrenal (HPA) axis, which is a risk factor associated with mood disorders. However, the prevalence of hyperphagia (17%) and depression (50%) is variable among adults that experienced ELS, suggesting that the nature, intensity, and chronicity of the stress determines the specific behavioral alteration that those individuals develop. METHODS: We analyzed corticosterone serum levels, Crh, GR, Crhr1 genes expression in the hypothalamic paraventricular nucleus, amygdala, and hippocampus due to their regulatory role on HPA axis in adult rats that experienced maternal separation (MS) or limited nesting material (LNM) stress; as well as the serotonergic system activity in the same regions given its association with the corticotropin-releasing hormone (CRH) pathway functioning and with the hyperphagia and depression development. RESULTS: Alterations in dams' maternal care provoked an unresponsive or hyper-responsive HPA axis function to an acute stress in MS and LNM adults, respectively. The differential changes in amygdala and hippocampal CRH system seemed compensating alterations to the hypothalamic desensitized glucocorticoids receptor (GR) in MS or hypersensitive in LNM. However, both adult animals developed hyperphagia and depression-like behavior when subjected to the forced-swimming test, which helps to understand that both hypo and hypercortisolemic patients present those disorders. CONCLUSION: Different ELS types induce neuroendocrine, brain CRH and 5-hydroxytriptamine (5-HT) systems' alterations that may interact converging to develop similar maladaptive behaviors.


Assuntos
Hormônio Liberador da Corticotropina , Serotonina , Humanos , Ratos , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Serotonina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Depressão/etiologia , Privação Materna , Sistema Hipófise-Suprarrenal/metabolismo , Encéfalo/metabolismo , Hiperfagia/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico
2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338735

RESUMO

The menopause transition is a vulnerable period for developing both psychiatric and metabolic disorders, and both can be enhanced by stressful events worsening their effects. The present study aimed to evaluate whether a cafeteria diet (CAF) combined with chronic variable stress (CVS) exacerbates anxious- or depressive-like behavior and neuronal activation, cell proliferation and survival, and microglia activation in middle-aged ovariectomized (OVX) rats. In addition, body weight, lipid profile, insulin resistance, and corticosterone as an index of metabolic changes or hypothalamus-pituitary-adrenal (HPA) axis activation, and the serum pro-inflammatory cytokines IL-6, IL-ß, and TNFα were measured. A CAF diet increased body weight, lipid profile, and insulin resistance. CVS increased corticosterone and reduced HDL. A CAF produced anxiety-like behaviors, whereas CVS induced depressive-like behaviors. CVS increased serum TNFα independently of diet. A CAF and CVS separately enhanced the percentage of Iba-positive cells in the hippocampus; the combination of factors further increased Iba-positive cells in the ventral hippocampus. A CAF and CVS increased the c-fos-positive cells in the hippocampus; the combination of factors increased the number of positive cells expressing c-fos in the ventral hippocampus even more. The combination of a CAF and CVS generates a slight neuroinflammation process and neuronal activation in a hippocampal region-specific manner and differentially affects the behavior.


Assuntos
Corticosterona , Resistência à Insulina , Menopausa , Microglia , Proteínas Proto-Oncogênicas c-fos , Animais , Feminino , Ratos , Ansiedade/etiologia , Ansiedade/psicologia , Peso Corporal , Depressão/etiologia , Dieta/efeitos adversos , Lipídeos , Menopausa/metabolismo , Microglia/metabolismo , Estresse Psicológico/metabolismo , Fator de Necrose Tumoral alfa , Proteínas Proto-Oncogênicas c-fos/metabolismo
3.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806264

RESUMO

Stress susceptibility could play a role in developing premenstrual anxiety due to abnormalities in the hypothalamus-pituitary-adrenal (HPA) axis and impairments in the GABAA receptors' benzodiazepine (BDZ) site. Hence, we studied the stress-vulnerable Wistar Kyoto rat strain (WKY) to evaluate progesterone withdrawal (PW) effects on anxiety, HPA axis response, and to explore indicators of GABAA functionality in the BDZ site. For five days, ovariectomized WKY rats were administered 2.0 mg/kg of progesterone. Twenty-four hours after the last administration, rats were tested in the anxiety-like burying behavior test (BBT) or elevated plus maze test (EPM), and corticosterone was determined. [3H]Flunitrazepam binding autoradiography served as the BDZ binding site index of the GABAA receptor in amygdala nuclei and hippocampus's dentate gyrus (DG). Finally, different doses of diazepam in PW-WKY rats were tested in the BBT. PW induced anxiety-like behaviors in both BBT and EPM compared with No-PW rats. PW increased corticosterone, but was blunted when combined with PW and BBT. PW increased [3H]Flunitrazepam binding in the DG and central amygdala compared with No-PW rats. Diazepam at a low dose induced an anxiogenic-like response in PW rats, suggesting a paradoxical response to benzodiazepines. Overall, PW induced anxiety-like behavior, a blunted HPA axis response, and higher GABAAR/BZD binding site sensitivity in a stress-vulnerable rat strain. These findings demonstrate the role of stress-susceptibility in GABAAR functionality in a preclinical approximation of PMDD.


Assuntos
Ansiedade , Comportamento Animal , Progesterona , Receptores de GABA-A , Síndrome de Abstinência a Substâncias , Animais , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Sítios de Ligação , Corticosterona/metabolismo , Diazepam/farmacologia , Feminino , Flunitrazepam/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Progesterona/administração & dosagem , Ratos , Ratos Endogâmicos WKY , Receptores de GABA-A/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo
4.
Yale J Biol Med ; 95(3): 389-398, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36187414

RESUMO

The principle of beneficence in health research implies the effort of researchers to minimize risk to participants and maximize benefits to participants and society, which could be considered an abstract definition. Therefore, the benefits are not easily conceived by researchers who fail to achieve their goal, which is to privilege the well-being of participants. The purpose of this work was to describe and discuss the theoretical elements that support the principle of beneficence so that their knowledge allows designing and granting adequate benefits to participants. The present document defines the principle of beneficence. It also analyzes the maximization of benefits, the distinctions between different classifications of benefits, and the differentiation from compensations or incentives. With all this information, researchers must do a critical deliberation to select adequate benefits for participants of their studies, considering the type of study, potential participants, probability of risk, among others. These benefits should not be understood as a charity that researchers grant to the participant; they should be conceived as any form of action in favor of the well-being of participants. Participants must always be considered as moral agents, responsible for deciding whether the benefits would outweigh the possible negative unintended consequences of a particular study. Finally, no risk should be taken if it is not commensurate or proportional to the benefit of the research study.


Assuntos
Comissão de Ética , Princípios Morais , Humanos
5.
Eur J Neurosci ; 54(4): 5293-5309, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34302304

RESUMO

Menopause, natural or surgical, might facilitate the onset of psychiatric pathologies. Some reports suggest that their severity could increase if the decline of ovarian hormones occurs abruptly and before natural endocrine senescence. Therefore, we compared the effects of ovariectomy on microglia's morphological alterations, the complexity of newborn neurons, and the animal's ability to cope with stress. Young adult (3 months) and middle-aged (15 months) female Wistar rats were subjected to an ovariectomy (OVX) or were sham-operated. After 3 weeks, animals were assigned to one of the following independent groups: (1) young adult OVX + no stress; (2) young adult sham + no stress; (3) young adult OVX + stress; (4) young adult sham + stress; (5) middle-aged OVX + no stress; (6) middle-aged sham + no stress; (7) middle-aged OVX + stress; (8) middle-aged sham + stress. Acute stress was induced by forced swimming test (FST) exposure. Immobility behavior was scored during FST and 30 min after; animals were euthanized, their brains collected and prepared for immunohistochemical detection of Iba-1 to analyze morphological alterations in microglia, and doublecortin (DCX) detection to evaluate the dendrite complexity of newborn neurons. OVX increased immobility behavior, induced microglia morphological alterations, and reduced dendrite complexity of newborn neurons in young adult rats. FST further increased this effect. In middle-aged rats, the main effects were related to the aging process without OVX or stress exposure. In conclusion, surgical menopause favors in young adult rats, but not in middle-aged, the vulnerability to develop immobility behavior, retracted morphology of microglial cells, and decreased dendrite complexity of newborn neurons.


Assuntos
Microglia , Estresse Psicológico , Animais , Dendritos , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Humanos , Proteínas Associadas aos Microtúbulos , Neurônios , Neuropeptídeos , Ovariectomia , Ratos , Ratos Wistar
6.
Int J Food Sci Nutr ; 72(7): 947-955, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33719824

RESUMO

Maqui-berry is characterised by presenting a high concentration of (poly)phenols, accounting anthocyanins (cyanidin and delphinidin) for over 85% of the total. These coloured flavonoids have demonstrated potential neurological activity, but the evidence of their antinociceptive properties is scarce. In order to cover this gap, different doses (suitable for human administration) of a maqui-berry powder (1.6% anthocyanin), using enteral and parenteral routes of administration, were compared at central and peripheral levels using a nociceptive pain model (formalin test) in mice. Gastric damage analysis as possible adverse effects of analgesic and anti-inflammatory drugs was also explored. Dose-antinociceptive response was confirmed using both routes of administration and in both neurogenic and inflammatory phases of the formalin test, without gastric damage. In conclusion, these preliminary data provide evidence of pharmacological properties of maqui-berry to alleviate nociceptive pain.


Assuntos
Analgésicos , Elaeocarpaceae , Dor Nociceptiva , Extratos Vegetais , Analgésicos/farmacologia , Animais , Antocianinas , Elaeocarpaceae/química , Frutas/química , Camundongos , Extratos Vegetais/farmacologia
7.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681636

RESUMO

Depression is a neuropsychiatric disorder with a high impact on the worldwide population. To overcome depression, antidepressant drugs are the first line of treatment. However, pre-clinical studies have pointed out that antidepressants are not entirely efficacious and that the quality of the living environment after stress cessation may play a relevant role in increasing their efficacy. As it is unknown whether a short daily exposure to environmental enrichment during chronic stress and antidepressant treatment will be more effective than just the pharmacological treatment, this study analyzed the effects of fluoxetine, environmental enrichment, and their combination on depressive-associated behavior. Additionally, we investigated hippocampal neurogenesis in mice exposed to chronic mild stress. Our results indicate that fluoxetine reversed anhedonia. Besides, fluoxetine reversed the decrement of some events of the hippocampal neurogenic process caused by chronic mild stress. Conversely, short daily exposure to environmental enrichment changed the deterioration of the coat and anhedonia. Although, this environmental intervention did not produce significant changes in the neurogenic process affected by chronic mild stress, fluoxetine plus environmental enrichment showed similar effects to those caused by environmental enrichment to reverse depressive-like behaviors. Like fluoxetine, the combination reversed the declining number of Ki67, doublecortin, calretinin cells and mature newborn neurons. Finally, this study suggests that short daily exposure to environmental enrichment improves the effects of fluoxetine to reverse the deterioration of the coat and anhedonia in chronically stressed mice. In addition, the combination of fluoxetine with environmental enrichment produces more significant effects than those caused by fluoxetine alone on some events of the neurogenic process. Thus, environmental enrichment improves the benefits of pharmacological treatment by mechanisms that need to be clarified.


Assuntos
Anedonia/efeitos dos fármacos , Fluoxetina/farmacologia , Hipocampo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Psicológico/fisiopatologia , Anedonia/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Calbindina 2/metabolismo , Proliferação de Células , Proteína Duplacortina/metabolismo , Meio Ambiente , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estresse Fisiológico
8.
Molecules ; 26(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072024

RESUMO

Overweight, obesity, and psychiatric disorders are serious health problems. To evidence the anxiolytic-like effects and lipid reduction in mice receiving a high-calorie diet and Bertholletia excelsa seeds in a nonpolar extract (SBHX, 30 and 300 mg/kg), animals were assessed in open-field, hole-board, and elevated plus-maze tests. SBHX (3 and 10 mg/kg) potentiated the pentobarbital-induced hypnosis. Chronic administration of SBHX for 40 days was given to mice fed with a hypercaloric diet to determine the relationship between water and food intake vs. changes in body weight. Testes, epididymal white adipose tissue (eWAT), and liver were dissected to analyze fat content, triglycerides, cholesterol, and histological effects after administering the hypercaloric diet and SBHX. Fatty acids, such as palmitoleic acid (0.14%), palmitic acid (21.42%), linoleic acid (11.02%), oleic acid (59.97%), and stearic acid (7.44%), were identified as constituents of SBHX, producing significant anxiolytic-like effects and preventing body-weight gain in mice receiving the hypercaloric diet without altering their water or food consumption. There was also a lipid-lowering effect on the testicular tissue and eWAT and a reduction of adipocyte area in eWAT. Our data evidence beneficial properties of B. excelsa seeds influencing global health concerns such as obesity and anxiety.


Assuntos
Ansiedade/metabolismo , Bertholletia/metabolismo , Lipídeos/química , Sobrepeso/metabolismo , Sementes , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Sistema Nervoso Central , Ingestão de Alimentos , Epididimo/metabolismo , Ácidos Graxos/metabolismo , Hipnose , Masculino , Aprendizagem em Labirinto , Camundongos , Pentobarbital , Testículo/metabolismo
9.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138332

RESUMO

Adult neurogenesis occurs in the dentate gyrus (DG) of the hippocampus. New neurons help to counteract the effects of stress and several interventions including antidepressant drugs, environmental modifications and internal factors act pro-neurogenic with consequences in the dorsal and ventral DG. Melatonin, the main product synthesized by the pineal gland, induces antidepressant-like effects and modulates several events of the neurogenic process. However, the information related to the capability of melatonin to modulate dendrite maturation and complexity in the dorsal and ventral regions of the DG and their correlation with its antidepressant-like effect is absent. Thus, in this study, we analyzed the impact of melatonin (0, 0.5, 1, 2.5, 5 or 10 mg/kg) administered daily for fourteen days on the number, dendrite complexity and distribution of doublecortin (DCX)-cells in the dorsal-ventral regions of the DG in male Balb/C mice. Doublecortin is a microtubule-associated protein that is expressed during the course of dendritic maturation of newborn neurons. Also, we analyzed the impact of melatonin on despair-like behavior in the forced swim test. We first found a significant increase in the number and higher dendrite complexity, mainly with the doses of 2.5, 5 and 10 mg/kg of melatonin (81%, 122%, 78%). These cells showed more complex dendritic trees in the ventral- and the dorsal- DG. Concomitantly, the doses of 5 and 10 mg/kg of melatonin decreased depressant-like behavior (76%, 82%). Finally, the data corroborate the antidepressant-like effect of melatonin and the increasing number of doublecortin-associated cells. Besides, the data indicate that melatonin favors the number and dendrite complexity of DCX-cells in the dorsal- and ventral- region of the DG, which may explain part of the antidepressant-like effect of melatonin.


Assuntos
Antidepressivos/uso terapêutico , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Melatonina/uso terapêutico , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/efeitos dos fármacos , Neuropeptídeos/metabolismo
10.
Behav Pharmacol ; 28(7): 545-557, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28704274

RESUMO

The maternal separation (MS) paradigm is a well-known animal model that resembles the stress of early adverse life experiences and produces structural and functional abnormalities when animals are adults. The present study analyzed the effect of MS, in adult mice, on brain-derived neurotrophic factor (BDNF), serotonin (5-HT), and dopamine (DA) levels, and the turnover rate in the hippocampus, frontal cortex, and amygdala, and brain regions that are associated with emotion. Also, the effects of MS in depression-like responses in adult mice were studied. The results showed that MS from postnatal day 8-21 induces depression-like behaviors. In MS mice, the three brain areas showed differential responses in 5-HT, DA, and BDNF concentrations both in basal levels and when animals were challenged with an acute stressor in adulthood. Specifically, under basal conditions, MS increased monoamine and BDNF levels in the hippocampus and amygdala, but decreased these levels in the frontal cortex. In MS, but not in control mice, the amygdala responded to the stress challenge, whereas the frontal cortex showed no response. Finally, the hippocampus showed increased 5-HT and DA activity, but not increased BDNF after the stress challenge in MS mice. The present results support the theory of the hypofunctionality of the frontal cortex and hyperactivity of mesolimbic areas in depression-like conditions.


Assuntos
Privação Materna , Estresse Psicológico/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Monoaminas Biogênicas/metabolismo , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Dopamina/metabolismo , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Serotonina/metabolismo , Estresse Psicológico/fisiopatologia
11.
Int J Mol Sci ; 18(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257042

RESUMO

It has been reported that the aqueous extract of pomegranate (AE-PG) has polyphenols with estrogenic-like activities. The present work determines if AE-PG alone or in combination with the selective serotonin reuptake inhibitor, citalopram, has antidepressant-like effects. It was also analyzed the participation of estrogen receptors (ER). AE-PG (0.1, 1.0, 10, or 100 mg/kg) was evaluated in ovariectomized female Wistar rats subjected to the forced swimming test. The effects induced by AE-PG were compared with those of citalopram (2.5, 5.0, 10, and 20.0 mg/kg) and 17ß-estradiol (E2; 2.5 5.0, and 10 µg/rat). Likewise, the combination of suboptimal doses of AE-PG (0.1 mg/kg) plus citalopram (2.5 mg/kg) was evaluated. To determine if ER participates in the antidepressant-like action of pomegranate, the estrogen antagonist tamoxifen (15 mg/kg) was administered with AE-PG (1 mg/kg). AE-PG produced antidepressant-like actions with a similar behavioral profile induced by citalopram and E2. Suboptimal doses of citalopram plus AE-PG produced antidepressant-like effects. Tamoxifen was able to block AE-PG's antidepressant-like actions. These results confirm the participation of ER in AE-PG's antidepressant-like effects. Furthermore, the additive effects observed with the combined treatment of AE-PG plus citalopram could be advantageous in the treatment of depressive disorders, such as menopause.


Assuntos
Antidepressivos/farmacologia , Citalopram/farmacologia , Lythraceae/química , Menopausa/efeitos dos fármacos , Extratos Vegetais/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Antidepressivos/administração & dosagem , Antidepressivos/uso terapêutico , Citalopram/administração & dosagem , Citalopram/uso terapêutico , Antagonistas de Estrogênios/farmacologia , Feminino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar , Receptores de Estrogênio/antagonistas & inibidores , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Tamoxifeno/farmacologia
12.
J Pineal Res ; 56(4): 450-61, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24650119

RESUMO

Adult hippocampal neurogenesis is affected in some neuropsychiatric disorders such as depression. Numerous evidence indicates that plasma levels of melatonin are decreased in depressed patients. Also, melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behavior. In addition, antidepressants revert alterations of hippocampal neurogenesis present in models of depression following a similar time course to the improvement of behavior. In this study, we analyzed the effects of both, citalopram, a widely used antidepressant, and melatonin in the Porsolt forced swim test. In addition, we investigated the potential antidepressant role of the combination of melatonin and citalopram (MLTCITAL), its type of pharmacological interaction on depressive behavior, and its effect on hippocampal neurogenesis. Here, we found decreased immobility behavior in mice treated with melatonin (<14-33%) and citalopram (<17-30%). Additionally, the MLTCITAL combination also decreased immobility (<22-35%) in comparison with control mice, reflecting an antidepressant-like effect after 14 days of treatment. Moreover, MLTCITAL decreased plasma corticosterone levels (≤13%) and increased cell proliferation (>29%), survival (>39%), and the absolute number of -associated new neurons (>53%) in the dentate gyrus of the hippocampus. These results indicate that the MLTCITAL combination exerts synergism to induce an antidepressant-like action that could be related to the modulation of adult hippocampal neurogenesis. This outcome opens the opportunity of using melatonin to promote behavioral benefits and hippocampal neurogenesis in depression and also supports the use of the MLTCITAL combination as an alternative to treat depression.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Citalopram , Depressão , Hipocampo/metabolismo , Melatonina , Neurogênese/efeitos dos fármacos , Animais , Citalopram/agonistas , Citalopram/farmacologia , Depressão/tratamento farmacológico , Depressão/patologia , Depressão/fisiopatologia , Sinergismo Farmacológico , Hipocampo/patologia , Masculino , Melatonina/agonistas , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C
13.
Front Nutr ; 11: 1368111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638297

RESUMO

Introduction: Binge eating disorder (BED) is a widespread eating disorder that primarily affects women worldwide, and it is characterized by the presence of binge eating episodes and the absence of any compensatory behavior to prevent weight gain. BED presents elevated comorbidity with other psychiatric disorders, such as anxiety, and it has been suggested that stress sensibility could be a vulnerability factor for the development of BED and the associated anxiety comorbidity. In this study, we aim to investigate whether the Wistar-Kyoto rat strain (WKY), which has a stress hyper-reactive phenotype, could develop both binge-type eating and anxiety-like behaviors simultaneously. We also aim to compare its vulnerability to developing both behaviors with the Sprague Dawley rat strain (SD), a rat strain commonly used in binge-eating models. Methods: WKY and SD rats were subjected to the model of intermittent access to palatable food (sucrose solution 30% or shortening) without calorie restriction or stress exposure. We evaluated and compared the development of binge-type eating behavior, anxiety-like behavior, and serum corticosterone variation as an index of the stress response in both rat strains. Results: WKY rats presented a higher percentage of binge-type eaters and required less time to develop binge-type eating behavior than SD rats. The WKY eating pattern emulated a binge-eating episode regardless of the palatable food. Although the development of sucrose binge-type eating was similar between strains, WKY developed more easily the shortening binge-type eating than SD and was more susceptible to developing anxiety-like behavior. Additionally, sucrose binge eating seems to differentially affect both strains' hypothalamic-pituitary-adrenal (HPA) axis response to stress since it facilitated its response in SD and blunted it in WKY. Discussion: Our results show that high-stress sensitive phenotype is a common vulnerability factor for the development of binge-type eating and anxiety-like behavior. Regardless of the macronutrient composition of the palatable food, WKY is susceptible to developing a binge-type eating behavior and is more susceptible than SD to developing anxiety-like behavior simultaneously. In conclusion, results showed that a hyper-reactive stress phenotype predisposes the development of binge-type eating behavior and anxiety-like behavior in the absence of calorie restriction and stress exposure.

14.
Front Pharmacol ; 14: 1211663, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900157

RESUMO

Introduction: Natural products such as phytoestrogens-enriched foods or supplements have been considered as an alternative therapy to reduce depressive symptoms associated with menopause. It is known that the aqueous extract of Punica granatum (AE-PG) exerts antidepressant-like effects by activating ß-estrogen receptors and facilitates the antidepressant response of the clinical drug citalopram (CIT). However, the effects on neuroplasticity are unknown. Objectvie investigated the antidepressant-like response of combining AE-PG and CIT at sub-optimal doses, analyzing their effects on the formation and maturation of dendrite spines in granule cells as well as on the dendrite complexity. Methods: Ovariectomized Wistar rats (3-month-old) were randomly assigned to one of the following groups: A) control (saline solution as vehicle of CIT and AE-PG, B) AE-PG at a sub-threshold dose (vehicle of CIT plus AE-PG at 0.125 mg/kg), C) CIT at a sub-threshold dose (0.77 mg/kg plus vehicle of AE-PG), and D) a combination of CIT plus AE-PG (0.125 mg/kg and 0.77 mg/kg, respectively). All rats were treated intraperitoneally for 14 days. Antidepressant-like effects were evaluated using the force swimming test test (FST). The complexity of dendrites and the number and morphology of dendrite spines of neurons were assessed in the dentate gyrus after Golgi-Cox impregnation. The expressions of the mature brain-derived neurotrophic factor (mBDNF) in plasma and of mBDNF and synaptophysin in the hippocampus, as markers of synaptogenesis, were also determined. Results: Administration of CIT combined with AE-PG, but not alone, induced a significant antidepressant-like effect in the FST with an increase in the dendritic complexity and the number of dendritic spines in the dentate gyrus (DG) of the hippocampus, revealed by the thin and stubby categories of neurons at the granular cell layer. At the same time, an increase of mBDNF and synaptophysin expression was observed in the hippocampus of rats that received the combination of AE-PG and CIT.

15.
Front Behav Neurosci ; 16: 836681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600992

RESUMO

Previous reports described the antidepressant-like action of the aqueous extract of pomegranate (Punica granatum: AEPG). Thus we evaluated the effect of AEPG and the main compounds found in the extract, punicalagin (PNCG) and ellagic acid (EA), on forced swimming test and the redox environment (reactive oxygen species [ROS] production, lipoperoxidation [LPX], and cellular function) in the brain of rats treated with 3 weeks post ovariectomy exposed ex vivo to pro-oxidants. Also, we selected PNCG and EA to study their antidepressant-like effects (0.001, 0.01, 0.1, 1.0, and 10 mg/kg) in the forced swimming test and their scavenging capacities in chemical combinatorial assays (expressed as IC50 values). We observed a 2-fold increase in the formation of ROS and LPX in the brain after exposure to FeSO4. However, these effects were significantly attenuated when rats were treated with AEPG, PNCG, and EA (1 mg/kg and 0.010 mg/kg for 14 days). AEPG and EA significantly increased the cellular function values of brains that had been affected by the effect of FeSO4 and with ONOO-. PNCG and EA significantly reduced immobility behavior at the lower doses used in this study. The capacity of scavenging compounds to eliminate radicals was for hydroxyl radical (⋅OH), superoxide anion (O2⋅⁣-), and peroxynitrite (ONOO-) as follows: AEPG > punicalagin > ellagic acid. In conclusion, the AEPG and their active compounds PNCG and EA promote antidepressant-like actions and antioxidant activity as they attenuate oxidative damage and prevent cellular dysfunction in ovariectomized rat brains.

16.
Antioxidants (Basel) ; 11(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35883715

RESUMO

Endurance and resistance exercises, alone or in combination, induce metabolic changes that affect tryptophan (Trp) catabolism. The kynurenine pathway (KP) is the main route of Trp degradation, and it is modulated by the inflammatory and redox environments. Previous studies have shown that KP metabolites work as myokines that mediate the positive systemic effects related to exercise. However, it is poorly understood how different exercise modalities and intensities impact the KP. The aim of this study was to characterize the effect of two different exercise modalities, military diving and swimming, on the KP and the redox environment. A total of 34 healthy men from the Mexican Navy were included in the study, 20 divers and 14 swimmers, who started and stayed in military training consistently during the six months of the study; 12 Mexican men without fitness training were used as the control group. Physical fitness was determined at the beginning and after 6 months of training; criteria included body composition; serum levels of Trp, kynurenine (KYN), kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK); the glutathione ratio (GSH/GSSG); and malondialdehyde (MDA).. Results showed a significant loss of body fat in both the diver and swimmer groups. Compared with the control group, divers showed a decrease in Trp and 3-HK levels, but no changes were observed in the KYN/Trp, KYNA/Trp or 3-HK/Trp ratios, while swimmers showed a decrease in KYN levels and an increase in the KYNA and 3-HK levels. Additionally, divers showed a decrease in the GSH/GSSG ratio and an increase in MDA levels, in contrast to the swimmers, who showed a decrease in MDA levels and an increase in GSH/GSSG levels. Our findings suggest a differential shift in the KP and redox environment induced by diving and swimming. Swimming promotes an antioxidant environment and a peripheral overactivation of the KP.

17.
Neurochem Int ; 142: 104904, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220387

RESUMO

Pomegranate (Punica granatum) fruit is of particular interest because of its high nutritional value and therapeutic actions. Recently, we showed that an aqueous extract of pomegranate (AE-PG) given by oral route induced antidepressant-like actions mediated by estrogen receptors (ERs) suggesting its potential to function as an alternative to estrogen therapy replacement in menopause-related depression treatment. Orally administered AE-PG allows the biotransformation of ellagitannins into active estrogenic compounds through the intestinal microbiota. However, it is necessary to know if compounds that do not need to be biotransformed by the intestinal microbiota are involved in the antidepressant-like effects. Therefore, the first aim of this study was to determine if AE-PG produces an antidepressant-like effect when administered intraperitoneally. Also, to determine the participation of specific ER-subtypes (α or ß) and to analyze the role of the serotonergic system. Young female Wistar rats were ovariectomized as a surgical model of menopause. The intraperitoneal administration of AE-PG (1 mg/kg; i. p.) was evaluated in the forced swimming test and open field tests. Also, the ERα antagonist (TPBM; 50 µg/rat; s. c.) or the ERß antagonist (PHTPP; 25 µg/rat; s. c.) were administered with AE-PG to analyze the participation of the specific ERs. Finally, the effect of the serotonin neurotoxin 5,7-DHT (200 µg/rat; i. c.v.) on the antidepressant-like effect of the AE-PG was studied in independent experimental groups. RESULTS: showed that AE-PG administered by intraperitoneal route induced antidepressant-like effects. This result suggests that gut microbiota biotransformation is not necessary to exert its actions. The mechanism of action involves the activation of the ERß and the serotonergic system. Altogether, this information contributes to the elucidation of the antidepressant action of the pomegranate fruit, which could be further considered as an alternative treatment for depression during menopause.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Receptor beta de Estrogênio/metabolismo , Ovariectomia , Punica granatum , Serotonina/metabolismo , Animais , Antidepressivos/isolamento & purificação , Antidepressivos/metabolismo , Depressão/metabolismo , Depressão/psicologia , Receptor beta de Estrogênio/antagonistas & inibidores , Feminino , Ovariectomia/psicologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Extratos Vegetais/uso terapêutico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Água
18.
Front Behav Neurosci ; 15: 734054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658806

RESUMO

Chronic stress exposure during adolescence is a significant risk factor for the development of depression. Chronic social defeat (CSD) in rodents is an animal model of depression with excellent ethological, predictive, discriminative, and face validity. Because the CSD model has not been thoroughly examined as a model of stress-induced depression within the adolescence stage, the present study analyzed the short- and long-term behavioral and neuroendocrine effects of CSD during early adolescence. Therefore, adolescent male Swiss-Webster (SW) mice were exposed to the CSD model from postnatal day (PND) 28 to PND37. Twenty-four hours (mid-adolescence) or 4 weeks (early adulthood) later, mice were tested in two models of depression; the social interaction test (SIT) and forced swimming test (FST); cognitive deficits were evaluated in the Barnes maze (BM). Finally, corticosterone and testosterone content was measured before, during, and after CSD exposure, and serotonin transporter (SERT) autoradiography was studied after CSD in adolescent and adult mice. CSD during early adolescence induced enduring depression-like behaviors as inferred from increased social avoidance and immobility behavior in the SIT and FST, respectively, which correlated in an age-dependent manner with SERT binding in the hippocampus; CSD during early adolescence also induced long-lasting learning and memory impairments in the Barnes maze (BM). Finally, CSD during early adolescence increased serum corticosterone levels in mid-adolescence and early adulthood and delayed the expected increase in serum testosterone levels observed at this age. In conclusion: (1) CSD during early adolescence induced long-lasting depression-like behaviors, (2) sensitivity of SERT density during normal brain development was revealed, (3) CSD during early adolescence induced enduring cognitive deficits, and (4) results highlight the vulnerability of the adolescent brain to social stressors on the adrenal and gonadal axes, which emphasizes the importance of an adequate interaction between both axes during adolescence for normal development of brain and behavior.

19.
Nutrients ; 13(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34371971

RESUMO

Although physiologically pain has a protective function, in many diseases, it is one of the most prominent symptoms. Today, new trends are focused on finding more natural alternatives to conventional treatments to alleviate it. Thereby, the purpose of this investigation was to obtain preclinical data of the antinociceptive properties of a lyophilized obtained from a newly designed maqui-citrus beverage alone and added with different sweeteners. To achieve this objective, maqui berry and citrus pharmacological activity were studied separately, as well as the interaction of both ingredients. In addition, due to the controversy generated regarding the intake of sugars, related to different metabolic diseases, the influence of different sweeteners (stevia, sucralose, or sucrose) was studied to determine their possible influence on the bioactive compounds of this product. For the attainment of our goals, a pharmacological evaluation, using the 1% formalin test, a nociceptive pain model in mice, was performed by using a sub-efficacious dosage of Maqui (25 mg/kg, i.p.) alone and combined with citrus, and then compared with the effects obtained in the presence of the different sweeteners. As a result, the antinociceptive response of the maqui was synergized in the presence of citrus in the neurogenic and inflammatory phases of the formalin test. However, this response was partially or totally reduced in the presence of the sweeteners. Our study gives preclinical evidence that a combination of maqui and citrus might exert beneficial actions to relieve pain, whereas the presence of sweeteners could reduce or avoid it.


Assuntos
Analgésicos/administração & dosagem , Citrus , Elaeocarpaceae , Frutas/química , Compostos Fitoquímicos/antagonistas & inibidores , Edulcorantes/farmacologia , Analgesia , Animais , Antocianinas/análise , Bebidas , Sinergismo Farmacológico , Flavanonas/análise , Masculino , Camundongos , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/análise , Stevia , Sacarose/análogos & derivados , Sacarose/farmacologia
20.
Behav Pharmacol ; 21(5-6): 451-64, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20700047

RESUMO

The use of estrogenic compounds as antidepressants or as coadjuvants to facilitate the effect of antidepressants has reported controversial results, suggesting that many factors could influence their actions. This review analyzes, from a basic research perspective, the possible factors that may underlie the antidepressant action of estrogens alone or in combination. The possible mechanisms of action of estrogens alone and in combination with the selective serotonin reuptake inhibitor, fluoxetine, the selective noradrenaline reuptake inhibitor, desipramine, and the mixed serotonin/noradrenaline reuptake inhibitor, venlafaxine are reviewed, focusing on monoaminergic systems and estrogen receptors as main targets. The antidepressant effect of estrogens depends on the type of estrogen, treatment duration, doses, sex, time after ovariectomy, and age. Estrogens potentiate the antidepressant-like action of fluoxetine, venlafaxine, and desipramine and drastically shorten their latency of action. The antidepressant-like effect of estrogens alone or in combination with antidepressants seems to be mediated by monoaminergic and classic estrogen receptors, as WAY100635, an antagonist to the serotonin 1A receptor, idaxozan, an antagonist to alpha2 adrenergic receptors, and RU 58668, an estrogen receptor antagonist, blocked their antidepressant-like effect. In conclusion, estrogens produce antidepressant-like actions by themselves and importantly facilitate the action of clinically used antidepressants.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Estrogênios/farmacologia , Fatores Etários , Animais , Antidepressivos/administração & dosagem , Depressão/fisiopatologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Estrogênios/administração & dosagem , Humanos , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Fatores Sexuais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA