Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 30(49): e202401233, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825747

RESUMO

The reaction of Re(CO)5Br with deprotonated 1H-(5-(2,2':6',2''-terpyridine)pyrid-2-yl)tetrazole yields a triangular assembly formed by tricarbonyl Re(I) vertices. Photophysical measurements reveal blue-green emission with a maximum at 520 nm, 32 % quantum yield, and 2430 ns long-lived excited state decay lifetime in deaerated dichloromethane solution. Coordination of lanthanoid ions to the terpyridine units red-shifts the emission to 570 nm and also reveals efficient (90 %) and fast sensitisation of both Eu(III) and Yb(III) at room temperature, with a similar rate constant kET on the order of 107 s-1. Efficient sensitisation of Eu(III) from Re(I) is unprecedented, especially when considering the close proximity in energy between the donor and acceptor excited states. On the other hand, comparative measurements at 77 K reveal that energy transfer to Yb(III) is two orders of magnitude slower than that to Eu(III). A two-step mechanism of sensitisation is therefore proposed, whereby the rate-determining step is a thermally activated energy transfer step between the Re(I) centre and the terpyridine functionality, followed by rapid energy transfer to the respective Ln(III) excited states. At 77 K, the direct Re(I) to Eu(III) energy transfer seems to proceed via a ligand-mediated superexchange Dexter-type mechanism.

2.
Dalton Trans ; 50(21): 7400-7408, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33969860

RESUMO

A visible light absorbing [RuII(tpy)2]2+-type chromophore appended with a dipicolinic acid LnIII chelator has been prepared and complexed with several differing lanthanide cations to form the corresponding heterobimetallic d-f assemblies. The subseqent solution speciation analysed by 1H NMR spectroscopy revealed an unexpected decrease in the LnIII chelate complex stability, in particular for the 1 : 3 complex, when compared to the parent dipicolinic acid. As a result, the desired Ln(ML)3 complexes could not be isolated, and the 1 : 1 LnIII-ML complexes were instead characterised and investigated using steady state absorption and emission spectroscopy. Sensitised NIR emission from the YbIII, NdIII and ErIII complexes was observed upon 1MLCT excitation of the RuII based metalloligand in the visible region at ca. 485 nm. Investigations using transient absorption spectroscopy revealed essentially quantitative intersystem crossing to form the 3MLCT excited state, as expected, which then acts as the energy donor for the metalloligand based antennae effect, facilitating sensitisation efficiencies of 4.8, 17.0 and 37.4% respectively for the YbIII, ErIII and NdIII cations.


Assuntos
Luminescência , Ácidos Picolínicos , Complexos de Coordenação , Espectroscopia de Ressonância Magnética
3.
Dalton Trans ; 48(6): 2142-2149, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30667429

RESUMO

Cyclometallated Pt(ii) complexes with arylpolypyridyl ligands have impressive photophysical properties (high quantum yields, long lifetimes and tuneable emission) which can be readily tuned by modification of the organic ligand. Despite this, few examples of cyclometallated Pt(ii) complexes as sensitisers for Ln(iii) emission have been reported. Herein, we report the photophysical properties for a series of bimetallic complexes incorporating an N^C^N-coordinated Pt(ii) bearing an alkynyl terpyridine as a metalloligand for a Ln(iii) ion (where Ln = Nd, Gd, Er, Yb and Lu). Using a combination of steady state, time-resolved, and transient absorption experiments, the influence on the photophysical properties of the metalloligand exerted by the different Ln(iii) cations has been investigated, together with the energy transfer efficiency from the metalloligand to the Ln(iii) 4f* excited state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA