Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 20(20): 4088-4101, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712559

RESUMO

This research addresses the growing menace of antibiotic resistance by exploring antimicrobial peptides (AMPs) as alternatives to conventional antibiotics. Specifically, we investigate two linear amphipathic AMPs, LE-53 (12-mer) and LE-55 (16-mer), finding that the shorter LE-53 exhibits greater bactericidal activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria. Remarkably, both AMPs are non-toxic to eukaryotic cells. The heightened effectiveness of LE-53 is attributed to its increased hydrophobicity (H) compared to LE-55. Circular dichroism (CD) reveals that LE-53 and LE-55 both adopt ß-sheet and random coil structures in lipid model membranes (LMMs) mimicking G(-) and G(+) bacteria, so secondary structure is not the cause of the potency difference. X-ray diffuse scattering (XDS) reveals increased lipid chain order in LE-53, a potential key distinction. Additionally, XDS study uncovers a significant link between LE-53's upper hydrocarbon location in G(-) and G(+) LMMs and its efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Solution small angle X-ray scattering (SAXS) demonstrates LE-53's ability to induce vesicle fusion in bacterial LMMs without affecting eukaryotic LMMs, offering a promising strategy to combat antibiotic-resistant strains while preserving human cell integrity, whereas LE-55 has a smaller ability to induce fusion.


Assuntos
Peptídeos Antimicrobianos , Humanos , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Interações Hidrofóbicas e Hidrofílicas , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos
2.
Adv Nanobiomed Res ; 3(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37476397

RESUMO

Antibiotics are losing effectiveness as bacteria become resistant to conventional drugs. To find new alternatives, antimicrobial peptides (AMPs) are rationally designed with different lengths, charges, hydrophobicities (H), and hydrophobic moments (µH), containing only three types of amino acids: arginine, tryptophan, and valine. Six AMPs with low minimum inhibitory concentrations (MICs) and <25% toxicity to mammalian cells are selected for biophysical studies. Their secondary structures are determined using circular dichroism (CD), which finds that the % α-helicity of AMPs depends on composition of the lipid model membranes (LMMs): gram-negative (G(-)) inner membrane (IM) >gram-positive (G(+)) > Euk33 (eukaryotic with 33 mol% cholesterol). The two most effective peptides, E2-35 (16 amino acid [AA] residues) and E2-05 (22 AAs), are predominantly helical in G(-) IM and G(+) LMMs. AMP/membrane interactions such as membrane elasticity, chain order parameter, and location of the peptides in the membrane are investigated by low-angle and wide-angle X-ray diffuse scattering (XDS). It is found that headgroup location correlates with efficacy and toxicity. The membrane bending modulus KC displays nonmonotonic changes due to increasing concentrations of E2-35 and E2-05 in G(-) and G(+) LMMs, suggesting a bacterial killing mechanism where domain formation causes ion and water leakage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA