Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2308478121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489389

RESUMO

The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.


Assuntos
Compostos Férricos , Prochlorococcus , Compostos Férricos/química , Proteínas de Ligação ao Ferro/metabolismo , Prochlorococcus/metabolismo , Ferro/metabolismo , Oxirredução , Transferrina/metabolismo , Água/química , Compostos Ferrosos/química , Cristalografia por Raios X
2.
Proc Natl Acad Sci U S A ; 115(38): 9569-9573, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30171169

RESUMO

We demonstrate that ion-beam milling of frozen, hydrated protein crystals to thin lamella preserves the crystal lattice to near-atomic resolution. This provides a vehicle for protein structure determination, bridging the crystal size gap between the nanometer scale of conventional electron diffraction and micron scale of synchrotron microfocus beamlines. The demonstration that atomic information can be retained suggests that milling could provide such detail on sections cut from vitrified cells.


Assuntos
Cristalografia por Raios X/métodos , Microtecnologia/métodos , Muramidase/ultraestrutura , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/instrumentação , Elétrons , Íons , Microtecnologia/instrumentação , Muramidase/química , Síncrotrons
3.
Nat Chem Biol ; 13(3): 290-294, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28092359

RESUMO

Substrate channeling has emerged as a common mechanism for enzymatic intermediate transfer. A conspicuous gap in knowledge concerns the use of covalent lysine imines in the transfer of carbonyl-group-containing intermediates, despite their wideuse in enzymatic catalysis. Here we show how imine chemistry operates in the transfer of covalent intermediates in pyridoxal 5'-phosphate biosynthesis by the Arabidopsis thaliana enzyme Pdx1. An initial ribose 5-phosphate lysine imine is converted to the chromophoric I320 intermediate, simultaneously bound to two lysine residues and partially vacating the active site, which creates space for glyceraldehyde 3-phosphate to bind. Crystal structures show how substrate binding, catalysis and shuttling are coupled to conformational changes around strand ß6 of the Pdx1 (ßα)8-barrel. The dual-specificity active site and imine relay mechanism for migration of carbonyl intermediates provide elegant solutions to the challenge of coordinating a complex sequence of reactions that follow a path of over 20 Å between substrate- and product-binding sites.


Assuntos
Lisina/metabolismo , Vitamina B 6/biossíntese , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Carbono-Nitrogênio Liases , Lisina/química , Modelos Moleculares , Estrutura Molecular , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/metabolismo , Vitamina B 6/química
4.
J Synchrotron Radiat ; 23(1): 228-37, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698068

RESUMO

Fringes and speckles occur within diffraction spots when a crystal is illuminated with coherent radiation during X-ray diffraction. The additional information in these features provides insight into the imperfections in the crystal at the sub-micrometre scale. In addition, these features can provide more accurate intensity measurements (e.g. by model-based profile fitting), detwinning (by distinguishing the various components), phasing (by exploiting sampling of the molecular transform) and refinement (by distinguishing regions with different unit-cell parameters). In order to exploit these potential benefits, the features due to coherent diffraction have to be recorded and any change due to radiation damage properly modelled. Initial results from recording coherent diffraction at cryotemperatures from polyhedrin crystals of approximately 2 µm in size are described. These measurements allowed information about the type of crystal imperfections to be obtained at the sub-micrometre level, together with the changes due to radiation damage.


Assuntos
Proteínas/efeitos da radiação , Cristalografia por Raios X , Proteínas/química
5.
Adv Exp Med Biol ; 922: 119-135, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27553239

RESUMO

X-ray diffraction from crystals of membrane proteins very often yields incomplete datasets due to, among other things, severe radiation damage. Multiple crystals are thus required to form complete datasets, provided the crystals themselves are isomorphous. Selection and combination of data from multiple crystals is a difficult and tedious task that can be facilitated by purpose-built software. BLEND, in the CCP4 suite of programs for macromolecular crystallography (MX), has been created exactly for this reason. In this chapter the program is described and its workings illustrated by means of data from two membrane proteins.


Assuntos
Cristalografia por Raios X , Proteínas de Membrana/química , Software , Proteínas de Bactérias/química , Gráficos por Computador , Haemophilus influenzae/química , Humanos , Computação Matemática , Proteínas de Membrana/efeitos da radiação , Receptores Histamínicos H1/química
6.
J Struct Biol ; 192(1): 88-99, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26291392

RESUMO

Polyhedra represent an ancient system used by a number of insect viruses to protect virions during long periods of environmental exposure. We present high resolution crystal structures of polyhedra for seven previously uncharacterised types of cypoviruses, four using ab initio selenomethionine phasing (two of these required over 100 selenomethionine crystals each). Approximately 80% of residues are structurally equivalent between all polyhedrins (pairwise rmsd ⩽ 1.5 Å), whilst pairwise sequence identities, based on structural alignment, are as little as 12%. These structures illustrate the effect of 400 million years of evolution on a system where the crystal lattice is the functionally conserved feature in the face of massive sequence variability. The conservation of crystal contacts is maintained across most of the molecular surface, except for a dispensable virus recognition domain. By spreading the contacts over so much of the protein surface the lattice remains robust in the face of many individual changes. Overall these unusual structural constraints seem to have skewed the molecule's evolution so that surface residues are almost as conserved as the internal residues.


Assuntos
Vírus de Insetos/ultraestrutura , Proteínas Estruturais Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Citidina Trifosfato/química , Evolução Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Estruturais Virais/ultraestrutura
7.
Biochim Biophys Acta ; 1838(1 Pt A): 78-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23860256

RESUMO

The field of Membrane Protein Structural Biology has grown significantly since its first landmark in 1985 with the first three-dimensional atomic resolution structure of a membrane protein. Nearly twenty-six years later, the crystal structure of the beta2 adrenergic receptor in complex with G protein has contributed to another landmark in the field leading to the 2012 Nobel Prize in Chemistry. At present, more than 350 unique membrane protein structures solved by X-ray crystallography (http://blanco.biomol.uci.edu/mpstruc/exp/list, Stephen White Lab at UC Irvine) are available in the Protein Data Bank. The advent of genomics and proteomics initiatives combined with high-throughput technologies, such as automation, miniaturization, integration and third-generation synchrotrons, has enhanced membrane protein structure determination rate. X-ray crystallography is still the only method capable of providing detailed information on how ligands, cofactors, and ions interact with proteins, and is therefore a powerful tool in biochemistry and drug discovery. Yet the growth of membrane protein crystals suitable for X-ray diffraction studies amazingly remains a fine art and a major bottleneck in the field. It is often necessary to apply as many innovative approaches as possible. In this review we draw attention to the latest methods and strategies for the production of suitable crystals for membrane protein structure determination. In addition we also highlight the impact that third-generation synchrotron radiation has made in the field, summarizing the latest strategies used at synchrotron beamlines for screening and data collection from such demanding crystals. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.


Assuntos
Proteínas de Membrana/química , Cristalografia por Raios X , Detergentes/química , Conformação Proteica , Síncrotrons
8.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 6): 1228-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26057664

RESUMO

The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Šresolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.


Assuntos
Cristalografia por Raios X/métodos , Proteínas de Membrana/química , Proteínas de Bactérias/química , Haemophilus influenzae/química , Modelos Moleculares , Conformação Proteica , Temperatura
9.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 2079-88, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26457431

RESUMO

The measurement of diffraction data from macromolecular crystal samples held in vacuo holds the promise of a very low X-ray background and zero absorption of incident and scattered beams, leading to better data and the potential for accessing very long X-ray wavelengths (>3 Å) for native sulfur phasing. Maintaining the hydration of protein crystals under vacuum is achieved by the use of liquid jets, as with serial data collection at free-electron lasers, or is side-stepped by cryocooling the samples, as implemented at new synchrotron beamlines. Graphene has been shown to protect crystals from dehydration by creating an extremely thin layer that is impermeable to any exchanges with the environment. Furthermore, owing to its hydrophobicity, most of the aqueous solution surrounding the crystal is excluded during sample preparation, thus eliminating most of the background caused by liquid. Here, it is shown that high-quality data can be recorded at room temperature from graphene-wrapped protein crystals in a rough vacuum. Furthermore, it was observed that graphene protects crystals exposed to different relative humidities and a chemically harsh environment.


Assuntos
Cristalografia por Raios X/métodos , Grafite/química , Proteínas/química , Aldose-Cetose Isomerases/química , Animais , Galinhas , Cristalização/métodos , Marantaceae/química , Muramidase/química , Proteínas de Plantas/química , Streptomyces/enzimologia , Temperatura , Vácuo , Água/química
10.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 6): 1400-10, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26057680

RESUMO

Research towards using X-ray free-electron laser (XFEL) data to solve structures using experimental phasing methods such as sulfur single-wavelength anomalous dispersion (SAD) has been hampered by shortcomings in the diffraction models for X-ray diffraction from FELs. Owing to errors in the orientation matrix and overly simple partiality models, researchers have required large numbers of images to converge to reliable estimates for the structure-factor amplitudes, which may not be feasible for all biological systems. Here, data for cytoplasmic polyhedrosis virus type 17 (CPV17) collected at 1.3 Å wavelength at the Linac Coherent Light Source (LCLS) are revisited. A previously published definition of a partiality model for reflections illuminated by self-amplified spontaneous emission (SASE) pulses is built upon, which defines a fraction between 0 and 1 based on the intersection of a reflection with a spread of Ewald spheres modelled by a super-Gaussian wavelength distribution in the X-ray beam. A method of post-refinement to refine the parameters of this model is suggested. This has generated a merged data set with an overall discrepancy (by calculating the R(split) value) of 3.15% to 1.46 Å resolution from a 7225-image data set. The atomic numbers of C, N and O atoms in the structure are distinguishable in the electron-density map. There are 13 S atoms within the 237 residues of CPV17, excluding the initial disordered methionine. These only possess 0.42 anomalous scattering electrons each at 1.3 Å wavelength, but the 12 that have single predominant positions are easily detectable in the anomalous difference Fourier map. It is hoped that these improvements will lead towards XFEL experimental phase determination and structure determination by sulfur SAD and will generally increase the utility of the method for difficult cases.


Assuntos
Algoritmos , Modelos Moleculares , Lasers
11.
Opt Express ; 23(2): 1576-84, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25835915

RESUMO

Grazing incidence mirrors are a standard optic for focusing X-rays. Active mirrors, whose surface profile can be finely adjusted, allow control of beam shape and size at the sample. However, progress towards their routine use for beam shaping has been hampered by the strong striations in reflected beams away from the focal plane. Re-entrant (partly concave and partly convex) surface modifications are proposed for shaping X-ray beams to a top-hat in the focal plane while reducing the striations caused by unavoidable polishing errors. A method for constructing such surfaces with continuous height and slope (but only piecewise continuous curvature) will be provided. Ray tracing and wave propagation calculations confirm its effectiveness. A mirror system is proposed allowing vertical beam sizes in the range 0.5 to 10µm. A prototype will be fabricated and is expected to have applications on many synchrotron X-ray beamlines.

12.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2652-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286849

RESUMO

A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of diffraction data. The method takes advantage of a simplification of Fourier transform-based methods that is applicable when the unit-cell dimensions are known a priori. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-lattice data recorded from crystals of ∼1 µm in size, where it is shown that up to six lattices can be successfully indexed and subsequently integrated from a 1° wedge of data. Analysis is presented which shows that improvements in data-quality indicators can be obtained through accurate identification and rejection of overlapping reflections prior to scaling.


Assuntos
Indexação e Redação de Resumos/métodos , Algoritmos , Cristalografia por Raios X/métodos , Bases de Dados de Proteínas , Análise de Fourier , Proteínas/química , Difração de Raios X
13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1248-56, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24816094

RESUMO

A departure from a linear or an exponential intensity decay in the diffracting power of protein crystals as a function of absorbed dose is reported. The observation of a lag phase raises the possibility of collecting significantly more data from crystals held at room temperature before an intolerable intensity decay is reached. A simple model accounting for the form of the intensity decay is reintroduced and is applied for the first time to high frame-rate room-temperature data collection.


Assuntos
Cristalografia por Raios X/métodos , Cristalografia por Raios X/instrumentação , Enterovirus Bovino/química , Vírus da Febre Aftosa/química , Modelos Teóricos , Proteínas/química , Temperatura
14.
EMBO J ; 29(2): 505-14, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19959989

RESUMO

Natural protein crystals (polyhedra) armour certain viruses, allowing them to survive for years under hostile conditions. We have determined the structure of polyhedra of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), revealing a highly symmetrical covalently cross-braced robust lattice, the subunits of which possess a flexible adaptor enabling this supra-molecular assembly to specifically entrap massive baculoviruses. Inter-subunit chemical switches modulate the controlled release of virus particles in the unusual high pH environment of the target insect's gut. Surprisingly, the polyhedrin subunits are more similar to picornavirus coat proteins than to the polyhedrin of cytoplasmic polyhedrosis virus (CPV). It is, therefore, remarkable that both AcMNPV and CPV polyhedra possess identical crystal lattices and crystal symmetry. This crystalline arrangement must be particularly well suited to the functional requirements of the polyhedra and has been either preserved or re-selected during evolution. The use of flexible adaptors to generate a powerful system for packaging irregular particles is characteristic of the AcMNPV polyhedrin and may provide a vehicle to sequester a wide range of objects such as biological nano-particles.


Assuntos
Baculoviridae/química , Proteínas Estruturais Virais/química , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Linhagem Celular , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Picornaviridae/química , Conformação Proteica , Multimerização Proteica , Reoviridae/química , Alinhamento de Sequência , Proteínas Estruturais Virais/genética
15.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 421-438, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38829361

RESUMO

For cryo-electron tomography (cryo-ET) of beam-sensitive biological specimens, a planar sample geometry is typically used. As the sample is tilted, the effective thickness of the sample along the direction of the electron beam increases and the signal-to-noise ratio concomitantly decreases, limiting the transfer of information at high tilt angles. In addition, the tilt range where data can be collected is limited by a combination of various sample-environment constraints, including the limited space in the objective lens pole piece and the possible use of fixed conductive braids to cool the specimen. Consequently, most tilt series are limited to a maximum of ±70°, leading to the presence of a missing wedge in Fourier space. The acquisition of cryo-ET data without a missing wedge, for example using a cylindrical sample geometry, is hence attractive for volumetric analysis of low-symmetry structures such as organelles or vesicles, lysis events, pore formation or filaments for which the missing information cannot be compensated by averaging techniques. Irrespective of the geometry, electron-beam damage to the specimen is an issue and the first images acquired will transfer more high-resolution information than those acquired last. There is also an inherent trade-off between higher sampling in Fourier space and avoiding beam damage to the sample. Finally, the necessity of using a sufficient electron fluence to align the tilt images means that this fluence needs to be fractionated across a small number of images; therefore, the order of data acquisition is also a factor to consider. Here, an n-helix tilt scheme is described and simulated which uses overlapping and interleaved tilt series to maximize the use of a pillar geometry, allowing the entire pillar volume to be reconstructed as a single unit. Three related tilt schemes are also evaluated that extend the continuous and classic dose-symmetric tilt schemes for cryo-ET to pillar samples to enable the collection of isotropic information across all spatial frequencies. A fourfold dose-symmetric scheme is proposed which provides a practical compromise between uniform information transfer and complexity of data acquisition.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Análise de Fourier , Razão Sinal-Ruído
16.
Ultramicroscopy ; 256: 113882, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37979542

RESUMO

Simulations of cryo-electron microscopy (cryo-EM) images of biological samples can be used to produce test datasets to support the development of instrumentation, methods, and software, as well as to assess data acquisition and analysis strategies. To be useful, these simulations need to be based on physically realistic models which include large volumes of amorphous ice. The gold standard model for EM image simulation is a physical atom-based ice model produced using molecular dynamics simulations. Although practical for small sample volumes; for simulation of cryo-EM data from large sample volumes, this can be too computationally expensive. We have evaluated a Gaussian Random Field (GRF) ice model which is shown to be more computationally efficient for large sample volumes. The simulated EM images are compared with the gold standard atom-based ice model approach and shown to be directly comparable. Comparison with experimentally acquired data shows the Gaussian random field ice model produces realistic simulations. The software required has been implemented in the Parakeet software package and the underlying atomic models are available online for use by the wider community.


Assuntos
Gelo , Software , Microscopia Crioeletrônica/métodos , Simulação de Dinâmica Molecular
17.
J Appl Crystallogr ; 57(Pt 3): 649-658, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38846772

RESUMO

Processing of single-crystal X-ray diffraction data from area detectors can be separated into two steps. First, raw intensities are obtained by integration of the diffraction images, and then data correction and reduction are performed to determine structure-factor amplitudes and their uncertainties. The second step considers the diffraction geometry, sample illumination, decay, absorption and other effects. While absorption is only a minor effect in standard macromolecular crystallography (MX), it can become the largest source of uncertainty for experiments performed at long wavelengths. Current software packages for MX typically employ empirical models to correct for the effects of absorption, with the corrections determined through the procedure of minimizing the differences in intensities between symmetry-equivalent reflections; these models are well suited to capturing smoothly varying experimental effects. However, for very long wavelengths, empirical methods become an unreliable approach to model strong absorption effects with high fidelity. This problem is particularly acute when data multiplicity is low. This paper presents an analytical absorption correction strategy (implemented in new software AnACor) based on a volumetric model of the sample derived from X-ray tomography. Individual path lengths through the different sample materials for all reflections are determined by a ray-tracing method. Several approaches for absorption corrections (spherical harmonics correction, analytical absorption correction and a combination of the two) are compared for two samples, the membrane protein OmpK36 GD, measured at a wavelength of λ = 3.54 Å, and chlorite dismutase, measured at λ = 4.13 Å. Data set statistics, the peak heights in the anomalous difference Fourier maps and the success of experimental phasing are used to compare the results from the different absorption correction approaches. The strategies using the new analytical absorption correction are shown to be superior to the standard spherical harmonics corrections. While the improvements are modest in the 3.54 Šdata, the analytical absorption correction outperforms spherical harmonics in the longer-wavelength data (λ = 4.13 Å), which is also reflected in the reduced amount of data being required for successful experimental phasing.

18.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 8): 1617-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23897484

RESUMO

The availability of intense microbeam macromolecular crystallography beamlines at third-generation synchrotron sources has enabled data collection and structure solution from microcrystals of <10 µm in size. The increased likelihood of severe radiation damage where microcrystals or particularly sensitive crystals are used forces crystallographers to acquire large numbers of data sets from many crystals of the same protein structure. The associated analysis and merging of multi-crystal data is currently a manual and time-consuming step. Here, a computer program, BLEND, that has been written to assist with and automate many of the steps in this process is described. It is demonstrated how BLEND has successfully been used in the solution of a novel membrane protein.


Assuntos
Análise por Conglomerados , Cristalografia por Raios X/métodos , Software , Insulina/química , Proteínas de Membrana/química , Modelos Moleculares , Muramidase , Proteínas de Plantas/química , Síncrotrons , Temperatura
19.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 7): 1252-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23793151

RESUMO

The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.


Assuntos
Bacteriorodopsinas/química , Processamento de Imagem Assistida por Computador , Lipídeos/química , Microrradiografia , Nitrito Redutases/química , Receptor A2A de Adenosina/química , Tomografia Computadorizada por Raios X , Algoritmos , Cristalografia por Raios X , Interpretação Estatística de Dados , Processamento Eletrônico de Dados , Humanos , Software
20.
Nat Commun ; 14(1): 4160, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443157

RESUMO

Infectious protein crystals are an essential part of the viral lifecycle for double-stranded DNA Baculoviridae and double-stranded RNA cypoviruses. These viral protein crystals, termed occlusion bodies or polyhedra, are dense protein assemblies that form a crystalline array, encasing newly formed virions. Here, using X-ray crystallography we determine the structure of a polyhedrin from Nudiviridae. This double-stranded DNA virus family is a sister-group to the baculoviruses, whose members were thought to lack occlusion bodies. The 70-year-old sample contains a well-ordered lattice formed by a predominantly α-helical building block that assembles into a dense, highly interconnected protein crystal. The lattice is maintained by extensive hydrophobic and electrostatic interactions, disulfide bonds, and domain switching. The resulting lattice is resistant to most environmental stresses. Comparison of this structure to baculovirus or cypovirus polyhedra shows a distinct protein structure, crystal space group, and unit cell dimensions, however, all polyhedra utilise common principles of occlusion body assembly.


Assuntos
Nudiviridae , Baculoviridae/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA