RESUMO
The origin of the German cockroach, Blattella germanica, is enigmatic, in part because it is ubiquitous worldwide in human-built structures but absent from any natural habitats. The first historical records of this species are from ca. 250 years ago (ya) from central Europe (hence its name). However, recent research suggests that the center of diversity of the genus is Asian, where its closest relatives are found. To solve this paradox, we sampled genome-wide markers of 281 cockroaches from 17 countries across six continents. We confirm that B. germanica evolved from the Asian cockroach Blattella asahinai approximately 2,100 ya, probably by adapting to human settlements in India or Myanmar. Our genomic analyses reconstructed two primary global spread routes, one older, westward route to the Middle East coinciding with various Islamic dynasties (~1,200 ya), and another younger eastward route coinciding with the European colonial period (~390 ya). While Europe was not central to the early domestication and spread of the German cockroach, European advances in long-distance transportation and temperature-controlled housing were likely important for the more recent global spread, increasing chances of successful dispersal to and establishment in new regions. The global genetic structure of German cockroaches further supports our model, as it generally aligns with geopolitical boundaries, suggesting regional bridgehead populations established following the advent of international commerce.
Assuntos
Blattellidae , Animais , Blattellidae/genética , Filogenia , Europa (Continente) , Evolução BiológicaRESUMO
The ecosystem services provided by dung beetles are well known and valued. Dung beetles bury dung for feeding and breeding, and it is generally thought that the process of burying dung increases nutrient uptake by plant roots, which promotes plant growth. Many studies have tested the effects of dung beetles on plant growth, but there has been no quantitative synthesis of these studies. Here we use a multi-level meta-analysis to estimate the average effect of dung beetles on plant growth and investigate factors that moderate this effect. We identified 28 publications that investigated dung beetle effects on plant growth. Of these, 24 contained the minimum quantitative data necessary to include in a meta-analysis. Overall, we found that dung beetles increased plant growth by 17%; the 95% CI for possible values for the true increase in plant growth that were most compatible with our data, given our statistical model, ranged from 1% to 35%. We found evidence that the dung beetle-plant growth relationship is influenced by the plant measurement type and the number of beetles accessing the dung. However, beetles did not increase plant growth in all quantitative trials, as individual effect sizes ranged from -72% to 806%, suggesting important context-dependence in the provision of ecosystem services.
Assuntos
Besouros , Ecossistema , Animais , Melhoramento Vegetal , Plantas , FezesRESUMO
Termites are major decomposers in terrestrial ecosystems and the second most diverse lineage of social insects. The Kalotermitidae form the second-largest termite family and are distributed across tropical and subtropical ecosystems, where they typically live in small colonies confined to single wood items inhabited by individuals with no foraging abilities. How the Kalotermitidae have acquired their global distribution patterns remains unresolved. Similarly, it is unclear whether foraging is ancestral to Kalotermitidae or was secondarily acquired in a few species. These questions can be addressed in a phylogenetic framework. We inferred time-calibrated phylogenetic trees of Kalotermitidae using mitochondrial genomes of â¼120 species, about 27% of kalotermitid diversity, including representatives of 21 of the 23 kalotermitid genera. Our mitochondrial genome phylogenetic trees were corroborated by phylogenies inferred from nuclear ultraconserved elements derived from a subset of 28 species. We found that extant kalotermitids shared a common ancestor 84â Ma (75-93â Ma 95% highest posterior density), indicating that a few disjunctions among early-diverging kalotermitid lineages may predate Gondwana breakup. However, most of the â¼40 disjunctions among biogeographic realms were dated at <50â Ma, indicating that transoceanic dispersals, and more recently human-mediated dispersals, have been the major drivers of the global distribution of Kalotermitidae. Our phylogeny also revealed that the capacity to forage is often found in early-diverging kalotermitid lineages, implying the ancestors of Kalotermitidae were able to forage among multiple wood pieces. Our phylogenetic estimates provide a platform for critical taxonomic revision and future comparative analyses of Kalotermitidae.
Assuntos
Genoma Mitocondrial , Isópteros , Animais , Núcleo Celular , Ecossistema , Humanos , Isópteros/genética , FilogeniaRESUMO
Insects breathe using one or a combination of three gas exchange patterns; continuous, cyclic and discontinuous, which vary in their rates of exchange of oxygen, carbon dioxide and water. In general, there is a trade-off between lowering gas exchange using discontinuous exchange that limits water loss at the cost of lower metabolic rate. These patterns and hypotheses for the evolution of discontinuous exchange have been examined for relatively large insects (>20 mg) over relatively short periods (<4 h), but smaller insects and longer time periods have yet to be examined. We measured gas exchange patterns and metabolic rates for adults of a small insect pest of grain, the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae), using flow-through respirometry in dry air for 48 h. All adults survived the desiccating measurement period; initially they used continuous gas exchange, then after 24 h switched to cyclic gas exchange with a 27% decrease in metabolic rate, and then after 48 h switched to discontinuous gas exchange with increased interburst duration and further decrease in metabolic rate. The successful use of the Qubit, a lower cost and so more common gas analyser, to measure respiration in the very small T. castaneum, may prompt more flow-through respirometry studies of small insects. Running such studies over long durations may help to better understand the evolution of respiration physiology and thus suggest new methods of pest management.
Assuntos
Besouros , Tribolium , Animais , Controle de Insetos/métodos , Dióxido de CarbonoRESUMO
Artificial intelligence (AI) solutions that automatically extract information from digital histology images have shown great promise for improving pathological diagnosis. Prior to routine use, it is important to evaluate their predictive performance and obtain regulatory approval. This assessment requires appropriate test datasets. However, compiling such datasets is challenging and specific recommendations are missing. A committee of various stakeholders, including commercial AI developers, pathologists, and researchers, discussed key aspects and conducted extensive literature reviews on test datasets in pathology. Here, we summarize the results and derive general recommendations on compiling test datasets. We address several questions: Which and how many images are needed? How to deal with low-prevalence subsets? How can potential bias be detected? How should datasets be reported? What are the regulatory requirements in different countries? The recommendations are intended to help AI developers demonstrate the utility of their products and to help pathologists and regulatory agencies verify reported performance measures. Further research is needed to formulate criteria for sufficiently representative test datasets so that AI solutions can operate with less user intervention and better support diagnostic workflows in the future.
Assuntos
Inteligência Artificial , Patologia , Humanos , Previsões , Conjuntos de Dados como AssuntoRESUMO
Following the acceptance of plate tectonics theory in the latter half of the 20th century, vicariance became the dominant explanation for the distributions of many plant and animal groups. In recent years, however, molecular-clock analyses have challenged a number of well-accepted hypotheses of vicariance. As a widespread group of insects with a fossil record dating back 300 My, cockroaches provide an ideal model for testing hypotheses of vicariance through plate tectonics versus transoceanic dispersal. However, their evolutionary history remains poorly understood, in part due to unresolved relationships among the nine recognized families. Here, we present a phylogenetic estimate of all extant cockroach families, as well as a timescale for their evolution, based on the complete mitochondrial genomes of 119 cockroach species. Divergence dating analyses indicated that the last common ancestor of all extant cockroaches appeared â¼235 Ma, â¼95 My prior to the appearance of fossils that can be assigned to extant families, and before the breakup of Pangaea began. We reconstructed the geographic ranges of ancestral cockroaches and found tentative support for vicariance through plate tectonics within and between several major lineages. We also found evidence of transoceanic dispersal in lineages found across the Australian, Indo-Malayan, African, and Madagascan regions. Our analyses provide evidence that both vicariance and dispersal have played important roles in shaping the distribution and diversity of these insects.
Assuntos
Distribuição Animal , Baratas/genética , Genoma Mitocondrial , Filogenia , Animais , FilogeografiaRESUMO
Termites are the principal decomposers in tropical and subtropical ecosystems around the world. Time-calibrated molecular phylogenies show that some lineages of Neoisoptera diversified during the Oligocene and Miocene, and acquired their pantropical distribution through transoceanic dispersal events, probably by rafting in wood. In this paper, we intend to resolve the historical biogeography of one of the earliest branching lineages of Neoisoptera, the Rhinotermitinae. We used the mitochondrial genomes of 27 species of Rhinotermitinae to build two robust time-calibrated phylogenetic trees that we used to reconstruct the ancestral distribution of the group. Our analyses support the monophyly of Rhinotermitinae and all genera of Rhinotermitinae. Our molecular clock trees provided time estimations that diverged by up to 15.6 million years depending on whether or not 3rd codon positions were included. Rhinotermitinae arose 50.4-64.6â¯Ma (41.7-74.5â¯Ma 95% HPD). We detected four disjunctions among biogeographic realms, the earliest of which occurred 41.0-56.6â¯Ma (33.0-65.8â¯Ma 95% HPD), and the latest of which occurred 20.3-34.2â¯Ma (15.9-40.4â¯Ma 95% HPD). These results show that the Rhinotermitinae acquired their distribution through a combination of transoceanic dispersals and dispersals across land bridges.
Assuntos
Baratas/classificação , Filogeografia , Animais , Baratas/genética , Variação Genética , Genoma Mitocondrial , FilogeniaRESUMO
Animals use cues to find their food, in microhabitats within their physiological tolerances. Termites build and modify their microhabitat, to transform hostile environments into benign ones, which raises questions about the relative importance of cues. Termites are desiccation intolerant and foraging termites are attracted to water, so most research has considered moisture to be a cue. However, termites can also transport water to food, and so moisture may play other roles than previously considered. To examine the role of moisture, we compared Coptotermes acinaciformis termite foraging decisions in laboratory experiments when they were offered dry and moist wood, with and without load. Without load, termites preferred moist wood and ate it without any building, whereas they moistened dry wood after wrapping it in a layer of clay. For the 'With load' units, termites substituted some of the wood for load-bearing clay walls, and kept the wood drier than on the unloaded units. As drier wood has higher compressive strength and higher rigidity, it allows more of the wood to be consumed. These results suggest that moisture plays a more important role in termite ecology than previously thought. Termites manipulate the moisture content according to the situational context and use it for multiple purposes: increased moisture levels soften the fibre, which facilitates foraging, yet keeping the wood dry provides higher structural stability against buckling which is especially important when foraging on wood under load.
Assuntos
Isópteros , Animais , Argila , Água , MadeiraRESUMO
The higher termites (Termitidae) are keystone species and ecosystem engineers. They have exceptional biomass and play important roles in decomposition of dead plant matter, in soil manipulation, and as the primary food for many animals, especially in the tropics. Higher termites are most diverse in rainforests, with estimated origins in the late Eocene (â¼54 Ma), postdating the breakup of Pangaea and Gondwana when most continents became separated. Since termites are poor fliers, their origin and spread across the globe requires alternative explanation. Here, we show that higher termites originated 42-54 Ma in Africa and subsequently underwent at least 24 dispersal events between the continents in two main periods. Using phylogenetic analyses of mitochondrial genomes from 415 species, including all higher termite taxonomic and feeding groups, we inferred 10 dispersal events to South America and Asia 35-23 Ma, coinciding with the sharp decrease in global temperature, sea level, and rainforest cover in the Oligocene. After global temperatures increased, 23-5 Ma, there was only one more dispersal to South America but 11 to Asia and Australia, and one dispersal back to Africa. Most of these dispersal events were transoceanic and might have occurred via floating logs. The spread of higher termites across oceans was helped by the novel ecological opportunities brought about by environmental and ecosystem change, and led termites to become one of the few insect groups with specialized mammal predators. This has parallels with modern invasive species that have been able to thrive in human-impacted ecosystems.
Assuntos
Isópteros/genética , Distribuição Animal , Animais , DNA Mitocondrial/genética , Ecossistema , Genoma Mitocondrial , Espécies Introduzidas , Isópteros/crescimento & desenvolvimento , Mitocôndrias/genética , Filogenia , Filogeografia/métodos , Floresta ÚmidaRESUMO
Carbon emissions from drained peatlands converted to agriculture in South-East Asia (i.e., Peninsular Malaysia, Sumatra and Borneo) are globally significant and increasing. Here, we map the growth of South-East Asian peatland agriculture and estimate CO2 emissions due to peat drainage in relation to official land-use plans with a focus on the reducing emissions from deforestation and degradation (REDD+)-related Indonesian moratorium on granting new concession licences for industrial agriculture and logging. We find that, prior to 2010, 35% of South-East Asian peatlands had been converted to agriculture, principally by smallholder farmers (15% of original peat extent) and industrial oil palm plantations (14%). These conversions resulted in 1.46-6.43 GtCO2 of emissions between 1990 and 2010. This legacy of historical clearances on deep-peat areas will contribute 51% (4.43-11.45 GtCO2 ) of projected future peatland CO2 emissions over the period 2010-2130. In Indonesia, which hosts most of the region's peatland and where concession maps are publicly available, 70% of peatland conversion to agriculture occurred outside of known concessions for industrial plantation development, with smallholders accounting for 60% and industrial oil palm accounting for 34%. Of the remaining Indonesian peat swamp forest (PSF), 45% is not protected, and its conversion would amount to CO2 emissions equivalent to 0.7%-2.3% (5.14-14.93 Gt) of global fossil fuel and cement emissions released between 1990 and 2010. Of the peatland extent included in the moratorium, 48% was no longer forested, and of the PSF included, 40%-48% is likely to be affected by drainage impacts from agricultural areas and will emit CO2 over time. We suggest that recent legislation and policy in Indonesia could provide a means of meaningful emission reductions if focused on revised land-use planning, PSF conservation both inside and outside agricultural concessions, and the development of agricultural practices based on rehabilitating peatland hydrological function.
Assuntos
Poluentes Atmosféricos , Carbono , Conservação dos Recursos Naturais , Solo , Agricultura , Sudeste Asiático , FlorestasRESUMO
Ants are diverse and abundant, especially in tropical ecosystems. They are often cited as the agents of key ecological processes, but their precise contributions compared with other organisms have rarely been quantified. Through the removal of food resources from the forest floor and subsequent transport to nests, ants play an important role in the redistribution of nutrients in rainforests. This is an essential ecosystem process and a key energetic link between higher trophic levels, decomposers and primary producers. We used the removal of carbohydrate, protein and seed baits as a proxy to quantify the contribution that ants, other invertebrates and vertebrates make to the redistribution of nutrients around the forest floor, and determined to what extent there is functional redundancy across ants, other invertebrate and vertebrate groups. Using a large-scale, field-based manipulation experiment, we suppressed ants from c. 1 ha plots in a lowland tropical rainforest in Sabah, Malaysia. Using a combination of treatment and control plots, and cages to exclude vertebrates, we made food resources available to: (i) the whole foraging community, (ii) only invertebrates and (iii) only non-ant invertebrates. This allowed us to partition bait removal into that taken by vertebrates, non-ant invertebrates and ants. Additionally, we examined how the non-ant invertebrate community responded to ant exclusion. When the whole foraging community had access to food resources, we found that ants were responsible for 52% of total bait removal whilst vertebrates and non-ant invertebrates removed the remaining 48%. Where vertebrates were excluded, ants carried out 61% of invertebrate-mediated bait removal, with all other invertebrates removing the remaining 39%. Vertebrates were responsible for just 24% of bait removal and invertebrates (including ants) collectively removed the remaining 76%. There was no compensation in bait removal rate when ants and vertebrates were excluded, indicating low functional redundancy between these groups. This study is the first to quantify the contribution of ants to the removal of food resources from rainforest floors and thus nutrient redistribution. We demonstrate that ants are functionally unique in this role because no other organisms compensated to maintain bait removal rate in their absence. As such, we strengthen a growing body of evidence establishing ants as ecosystem engineers, and provide new insights into the role of ants in maintaining key ecosystem processes. In this way, we further our basic understanding of the functioning of tropical rainforest ecosystems.
Assuntos
Formigas/fisiologia , Cadeia Alimentar , Floresta Úmida , Animais , Bornéu , Comportamento Alimentar , Invertebrados/fisiologia , Malásia , Filogenia , Vertebrados/fisiologiaRESUMO
Eavesdropping has evolved in many predator-prey relationships. Communication signals of social species may be particularly vulnerable to eavesdropping, such as pheromones produced by ants, which are predators of termites. Termites communicate mostly by way of substrate-borne vibrations, which suggest they may be able to eavesdrop, using two possible mechanisms: ant chemicals or ant vibrations. We observed termites foraging within millimetres of ants in the field, suggesting the evolution of specialised detection behaviours. We found the termite Coptotermes acinaciformis detected their major predator, the ant Iridomyrmex purpureus, through thin wood using only vibrational cues from walking, and not chemical signals. Comparison of 16 termite and ant species found the ants-walking signals were up to 100 times higher than those of termites. Eavesdropping on passive walking signals explains the predator detection and foraging behaviours in this ancient relationship, which may be applicable to many other predator-prey relationships.
Assuntos
Sinais (Psicologia) , Isópteros/fisiologia , Vibração , Animais , Formigas/fisiologia , Fenômenos Biomecânicos , Percepção , Comportamento PredatórioRESUMO
Termite mounds built by representatives of the family Termitidae are among the most spectacular constructions in the animal kingdom, reaching 6-8 m in height and housing millions of individuals. Although functional aspects of these structures are well studied, their evolutionary origins remain poorly understood. Australian representatives of the termitid subfamily Nasutitermitinae display a wide variety of nesting habits, making them an ideal group for investigating the evolution of mound building. Because they feed on a variety of substrates, they also provide an opportunity to illuminate the evolution of termite diets. Here, we investigate the evolution of termitid mound building and diet, through a comprehensive molecular phylogenetic analysis of Australian Nasutitermitinae. Molecular dating analysis indicates that the subfamily has colonized Australia on three occasions over the past approximately 20 Myr. Ancestral-state reconstruction showed that mound building arose on multiple occasions and from diverse ancestral nesting habits, including arboreal and wood or soil nesting. Grass feeding appears to have evolved from wood feeding via ancestors that fed on both wood and leaf litter. Our results underscore the adaptability of termites to ancient environmental change, and provide novel examples of parallel evolution of extended phenotypes.
Assuntos
Evolução Biológica , Isópteros/fisiologia , Animais , Austrália , Comportamento Alimentar , Isópteros/genética , Mitocôndrias/genética , Comportamento de Nidação , Filogenia , Poaceae , Árvores , MadeiraRESUMO
Termites have colonized many habitats and are among the most abundant animals in tropical ecosystems, which they modify considerably through their actions. The timing of their rise in abundance and of the dispersal events that gave rise to modern termite lineages is not well understood. To shed light on termite origins and diversification, we sequenced the mitochondrial genome of 48 termite species and combined them with 18 previously sequenced termite mitochondrial genomes for phylogenetic and molecular clock analyses using multiple fossil calibrations. The 66 genomes represent most major clades of termites. Unlike previous phylogenetic studies based on fewer molecular data, our phylogenetic tree is fully resolved for the lower termites. The phylogenetic positions of Macrotermitinae and Apicotermitinae are also resolved as the basal groups in the higher termites, but in the crown termitid groups, including Termitinae + Syntermitinae + Nasutitermitinae + Cubitermitinae, the position of some nodes remains uncertain. Our molecular clock tree indicates that the lineages leading to termites and Cryptocercus roaches diverged 170 Ma (153-196 Ma 95% confidence interval [CI]), that modern Termitidae arose 54 Ma (46-66 Ma 95% CI), and that the crown termitid group arose 40 Ma (35-49 Ma 95% CI). This indicates that the distribution of basal termite clades was influenced by the final stages of the breakup of Pangaea. Our inference of ancestral geographic ranges shows that the Termitidae, which includes more than 75% of extant termite species, most likely originated in Africa or Asia, and acquired their pantropical distribution after a series of dispersal and subsequent diversification events.
Assuntos
Genoma Mitocondrial/genética , Isópteros/genética , Animais , Evolução Biológica , Isópteros/classificação , FilogeniaRESUMO
Termites are eusocial insects that evolved from solitary cockroaches. It is not known precisely what factors drove the evolution of termite eusociality, that is, skewed reproduction with distinct winged reproductive and wingless worker phenotypes. In other eusocial insects (bees and wasps), reproductive skew evolved first and phenotype differences evolved second. We propose that the reverse pattern occurred in termites, that is, that the winged-wingless diphenism evolved before eusociality. We discuss existing phylogenetic and pheromonal evidence supporting our hypothesis. We provide new experimental evidence from the most basal termite species (Mastotermes darwiniensis), suggesting that the ancestral state was indeed diphenic but presocial. We propose that the mechanism promoting a winged-wingless diphenism-in the absence of eusociality-was greater predation of aerial than terrestrial dispersers, and we support this with a game theoretic model. We augment our hypothesis with a novel explanation for the evolution of the developmental pathways leading to winged and wingless phenotypes in termites. An added benefit of our hypothesis is that it neatly explains the origin of termite eusociality itself: in the pre-eusocial ancestral species, the poor dispersal ability of the wingless phenotype would have led to clustering of relatives around shared resources-a prerequisite for nonparental care of close relatives.
Assuntos
Evolução Biológica , Isópteros/anatomia & histologia , Isópteros/fisiologia , Distribuição Animal , Animais , Filogenia , Reprodução , Comportamento SocialRESUMO
Reticulitermes, Heterotermes and Coptotermes form a small termite clade with partly overlapping distributions. Although native species occur across all continents, the factors influencing their distribution are poorly known. Here, we reconstructed the historical biogeography of these termites using mitochondrial genomes of species collected on six continents. Our analyses showed that Reticulitermes split from Heterotermes + Coptotermesat 59.5 Ma (49.9-69.5 Ma 95% CI), yet the oldest split within Reticulitermes(Eurasia and North America) is 16.1 Ma (13.4-19.5 Ma) and the oldest split within Heterotermes + Coptotermesis 36.0 Ma (33.9-40.5 Ma). We detected 14 disjunctions between biogeographical realms, all of which occurred within the last 34 Ma, not only after the break-up of Pangaea, but also with the continents in similar to current positions. Land dispersal over land bridges explained four disjunctions, oceanic dispersal by wood rafting explained eight disjunctions, and human introduction was the source of two recent disjunctions. These wood-eating termites, therefore, appear to have acquired their modern worldwide distribution through multiple dispersal processes, with oceanic dispersal and human introduction favoured by the ecological traits of nesting in wood and producing replacement reproductives.
Assuntos
Distribuição Animal , Genoma de Inseto , Genoma Mitocondrial , Isópteros/fisiologia , Animais , Espécies Introduzidas , Isópteros/genética , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
The termite genus Coptotermes (Rhinotermitidae) is found in Asia, Africa, Central/South America and Australia, with greatest diversity in Asia. Some Coptotermes species are amongst the world's most damaging invasive termites, but the genus is also significant for containing the most sophisticated mound-building termites outside the family Termitidae. These mound-building Coptotermes occur only in Australia. Despite its economic and evolutionary significance, the biogeographic history of the genus has not been well investigated, nor has the evolution of the Australian mound-building species. We present here the first phylogeny of the Australian Coptotermes to include representatives from all described species. We combined our new data with previously generated data to estimate the first phylogeny to include representatives from all continents where the genus is found. We also present the first estimation of divergence dates during the evolution of the genus. We found the Australian Coptotermes to be monophyletic and most closely related to the Asian Coptotermes, with considerable genetic diversity in some Australian taxa possibly representing undescribed species. The Australian mound-building species did not form a monophyletic clade. Our ancestral state reconstruction analysis indicated that the ancestral Australian Coptotermes was likely to have been a tree nester, and that mound-building behaviour has arisen multiple times. The Australian Coptotermes were found to have diversified â¼13million years ago, which plausibly matches with the narrowing of the Arafura Sea allowing Asian taxa to cross into Australia. The first diverging Coptotermes group was found to be African, casting doubt on the previously raised hypothesis that the genus has an Asian origin.
Assuntos
Evolução Biológica , Isópteros/classificação , Filogenia , Animais , Austrália , Teorema de Bayes , Clima Desértico , Variação Genética , Isópteros/genética , Funções Verossimilhança , Floresta Úmida , Análise de Sequência de DNARESUMO
Self-control tasks used with nonhuman animals typically involve the choice between an immediate option and a delayed, but more preferred option. However, in many self-control scenarios, not only does the more impulsive option come sooner in time, it is often more concrete than the delayed option. For example, studies have presented children with the option of eating a visible marshmallow immediately, or foregoing it for a better reward that can only be seen later. Thus, the immediately available option is visible and concrete, whereas the delayed option is not visible and more abstract. We tested eight capuchin monkeys to better understand this potential effect by manipulating the visibility of the response options and the visibility of the baiting itself. Monkeys observed two food items (20 or 5 g pieces of banana) each being placed either on top of or inside of one of the two opaque containers attached to a revolving tray apparatus, either in full view of monkeys or occluded by a barrier. Trials ended when monkeys removed a reward from the rotating tray. To demonstrate self-control, monkeys should have allowed the smaller piece of food to pass if the larger piece was forthcoming. Overall, monkeys were successful on the task, allowing a smaller, visible piece of banana to pass from reach in order to access the larger, nonvisible banana piece. This was true even when the entire baiting process took place out of sight of the monkeys. This finding suggests that capuchin monkeys succeed on self-control tasks even when the delayed option is also more abstract than the immediate one-a situation likely faced by primates in everyday life.
Assuntos
Cebus/psicologia , Comportamento de Escolha , Recompensa , Autocontrole , Animais , Feminino , Masculino , Fatores de TempoRESUMO
Extreme weather events, such as unusually hot or dry conditions, can cause death by exceeding physiological limits, and so cause loss of population. Survival will depend on whether or not susceptible organisms can find refuges that buffer extreme conditions. Microhabitats offer different microclimates to those found within the wider ecosystem, but do these microhabitats effectively buffer extreme climate events relative to the physiological requirements of the animals that frequent them? We collected temperature data from four common microhabitats (soil, tree holes, epiphytes, and vegetation) located from the ground to canopy in primary rainforests in the Philippines. Ambient temperatures were monitored from outside of each microhabitat and from the upper forest canopy, which represent our macrohabitat controls. We measured the critical thermal maxima (CTmax ) of frog and lizard species, which are thermally sensitive and inhabit our microhabitats. Microhabitats reduced mean temperature by 1-2 °C and reduced the duration of extreme temperature exposure by 14-31 times. Microhabitat temperatures were below the CTmax of inhabitant frogs and lizards, whereas macrohabitats consistently contained lethal temperatures. Microhabitat temperatures increased by 0.11-0.66 °C for every 1 °C increase in macrohabitat temperature, and this nonuniformity in temperature change influenced our forecasts of vulnerability for animal communities under climate change. Assuming uniform increases of 6 °C, microhabitats decreased the vulnerability of communities by up to 32-fold, whereas under nonuniform increases of 0.66 to 3.96 °C, microhabitats decreased the vulnerability of communities by up to 108-fold. Microhabitats have extraordinary potential to buffer climate and likely reduce mortality during extreme climate events. These results suggest that predicted changes in distribution due to mortality and habitat shifts that are derived from macroclimatic samples and that assume uniform changes in microclimates relative to macroclimates may be overly pessimistic. Nevertheless, even nonuniform temperature increases within buffered microhabitats would still threaten frogs and lizards.