RESUMO
Tissue-resident memory T cells (TRM cells) provide rapid and superior control of localized infections. While the transcription factor Runx3 is a critical regulator of CD8+ T cell tissue residency, its expression is repressed in CD4+ T cells. Here, we show that, as a direct consequence of this Runx3-deficiency, CD4+ TRM cells lacked the transforming growth factor (TGF)-ß-responsive transcriptional network that underpins the tissue residency of epithelial CD8+ TRM cells. While CD4+ TRM cell formation required Runx1, this, along with the modest expression of Runx3 in CD4+ TRM cells, was insufficient to engage the TGF-ß-driven residency program. Ectopic expression of Runx3 in CD4+ T cells incited this TGF-ß-transcriptional network to promote prolonged survival, decreased tissue egress, a microanatomical redistribution towards epithelial layers and enhanced effector functionality. Thus, our results reveal distinct programming of tissue residency in CD8+ and CD4+ TRM cell subsets that is attributable to divergent Runx3 activity.
Assuntos
Memória Imunológica , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
Tissue-resident memory T (TRM) cells are non-recirculating cells that exist throughout the body. Although TRM cells in various organs rely on common transcriptional networks to establish tissue residency, location-specific factors adapt these cells to their tissue of lodgment. Here we analyze TRM cell heterogeneity between organs and find that the different environments in which these cells differentiate dictate TRM cell function, durability and malleability. We find that unequal responsiveness to TGFß is a major driver of this diversity. Notably, dampened TGFß signaling results in CD103- TRM cells with increased proliferative potential, enhanced function and reduced longevity compared with their TGFß-responsive CD103+ TRM counterparts. Furthermore, whereas CD103- TRM cells readily modified their phenotype upon relocation, CD103+ TRM cells were comparatively resistant to transdifferentiation. Thus, despite common requirements for TRM cell development, tissue adaptation of these cells confers discrete functional properties such that TRM cells exist along a spectrum of differentiation potential that is governed by their local tissue microenvironment.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Plasticidade Celular/imunologia , Microambiente Celular/imunologia , Memória Imunológica/imunologia , Animais , Antígenos CD/imunologia , Linfócitos T CD8-Positivos/citologia , Feminino , Cadeias alfa de Integrinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta1/metabolismoRESUMO
The memory CD8+ T cell pool contains phenotypically and transcriptionally heterogeneous subsets with specialized functions and recirculation patterns. Here, we examined the epigenetic landscape of CD8+ T cells isolated from seven non-lymphoid organs across four distinct infection models, alongside their circulating T cell counterparts. Using single-cell transposase-accessible chromatin sequencing (scATAC-seq), we found that tissue-resident memory T (TRM) cells and circulating memory T (TCIRC) cells develop along distinct epigenetic trajectories. We identified organ-specific transcriptional regulators of TRM cell development, including FOSB, FOS, FOSL1, and BACH2, and defined an epigenetic signature common to TRM cells across organs. Finally, we found that although terminal TEX cells share accessible regulatory elements with TRM cells, they are defined by TEX-specific epigenetic features absent from TRM cells. Together, this comprehensive data resource shows that TRM cell development is accompanied by dynamic transcriptome alterations and chromatin accessibility changes that direct tissue-adapted and functionally distinct T cell states.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Linfócitos T CD8-Positivos , Diferenciação Celular , Epigênese Genética , Epigenômica , Memória Imunológica , Células T de Memória , Animais , Diferenciação Celular/imunologia , Diferenciação Celular/genética , Camundongos , Células T de Memória/imunologia , Células T de Memória/metabolismo , Memória Imunológica/genética , Memória Imunológica/imunologia , Linfócitos T CD8-Positivos/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Epigenômica/métodos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Transcriptoma , Cromatina/metabolismoRESUMO
Tissue-resident memory T (TRM) cells are integral to tissue immunity, persisting in diverse anatomical sites where they adhere to a common transcriptional framework. How these cells integrate distinct local cues to adopt the common TRM cell fate remains poorly understood. Here, we show that whereas skin TRM cells strictly require transforming growth factor ß (TGF-ß) for tissue residency, those in other locations utilize the metabolite retinoic acid (RA) to drive an alternative differentiation pathway, directing a TGF-ß-independent tissue residency program in the liver and synergizing with TGF-ß to drive TRM cells in the small intestine. We found that RA was required for the long-term maintenance of intestinal TRM populations, in part by impeding their retrograde migration. Moreover, enhanced RA signaling modulated TRM cell phenotype and function, a phenomenon mirrored in mice with increased microbial diversity. Together, our findings reveal RA as a fundamental component of the host-environment interaction that directs immunosurveillance in tissues.
RESUMO
Adoptive cell therapies using genetically engineered T cell receptor or chimeric antigen receptor T cells are emerging forms of immunotherapy that redirect T cells to specifically target cancer. However, tumor antigen heterogeneity remains a key challenge limiting their efficacy against solid cancers. Here, we engineered T cells to secrete the dendritic cell (DC) growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L-secreting T cells expanded intratumoral conventional type 1 DCs and substantially increased host DC and T cell activation when combined with immune agonists poly (I:C) and anti-4-1BB. Importantly, combination therapy led to enhanced inhibition of tumor growth and the induction of epitope spreading towards antigens beyond those recognized by adoptively transferred T cells in solid tumor models of T cell receptor and chimeric antigen receptor T cell therapy. Our data suggest that augmenting endogenous DCs is a promising strategy to overcome the clinical problem of antigen-negative tumor escape following adoptive cell therapy.
Assuntos
Células Dendríticas/imunologia , Imunoterapia Adotiva , Proteínas de Membrana/imunologia , Neoplasias Experimentais/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Humanos , Fatores Imunológicos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologiaRESUMO
Memory CD8+ T cells can be broadly divided into circulating (TCIRCM) and tissue-resident memory T (TRM) populations. Despite well-defined migratory and transcriptional differences, the phenotypic and functional delineation of TCIRCM and TRM cells, particularly across tissues, remains elusive. Here, we utilized an antibody screening platform and machine learning prediction pipeline (InfinityFlow) to profile >200 proteins in TCIRCM and TRM cells in solid organs and barrier locations. High-dimensional analyses revealed unappreciated heterogeneity within TCIRCM and TRM cell lineages across nine different organs after either local or systemic murine infection models. Additionally, we demonstrated the relative effectiveness of strategies allowing for the selective ablation of TCIRCM or TRM populations across organs and identified CD55, KLRG1, CXCR6, and CD38 as stable markers for characterizing memory T cell function during inflammation. Together, these data and analytical framework provide an in-depth resource for memory T cell classification in both steady-state and inflammatory conditions.
Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Camundongos , Animais , Linhagem da Célula , Memória ImunológicaRESUMO
Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.
Assuntos
Células Precursoras de Granulócitos/citologia , Monócitos/citologia , Mielopoese/fisiologia , Neutrófilos/citologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Célula ÚnicaRESUMO
Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection.
Assuntos
Vasos Sanguíneos/imunologia , Ritmo Circadiano/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Animais , Vasos Sanguíneos/metabolismo , Candida albicans/imunologia , Candida albicans/fisiologia , Células Cultivadas , Senescência Celular/imunologia , Quimiocina CXCL2/imunologia , Quimiocina CXCL2/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Receptores CXCR4/imunologia , Receptores CXCR4/metabolismo , Fatores de TempoRESUMO
Neutrophils are specialized innate cells that require constant replenishment from proliferative bone marrow (BM) precursors as a result of their short half-life. Although it is established that neutrophils are derived from the granulocyte-macrophage progenitor (GMP), the differentiation pathways from GMP to functional mature neutrophils are poorly defined. Using mass cytometry (CyTOF) and cell-cycle-based analysis, we identified three neutrophil subsets within the BM: a committed proliferative neutrophil precursor (preNeu) which differentiates into non-proliferating immature neutrophils and mature neutrophils. Transcriptomic profiling and functional analysis revealed that preNeu require the C/EBPε transcription factor for their generation from the GMP, and their proliferative program is substituted by a gain of migratory and effector function as they mature. preNeus expand under microbial and tumoral stress, and immature neutrophils are recruited to the periphery of tumor-bearing mice. In summary, our study identifies specialized BM granulocytic populations that ensure supply under homeostasis and stress responses.
Assuntos
Células da Medula Óssea/fisiologia , Neutrófilos/fisiologia , Animais , Células da Medula Óssea/imunologia , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Linhagem da Célula , Movimento Celular , Proliferação de Células , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Camundongos , Neoplasias Experimentais/imunologia , Neutrófilos/imunologiaRESUMO
The maintenance of appropriate arterial tone is critically important for normal physiological arterial function. However, the cellular and molecular mechanisms remain poorly defined. Here, we have shown that in the mouse aorta, resident macrophages prevented arterial stiffness and collagen deposition in the steady state. Using phenotyping, transcriptional profiling, and targeted deletion of Csf1r, we have demonstrated that these macrophages-which are a feature of blood vessels invested with smooth muscle cells (SMCs) in both mouse and human tissues-expressed the hyaluronan (HA) receptor LYVE-l. Furthermore, we have shown they possessed the unique ability to modulate collagen expression in SMCs by matrix metalloproteinase MMP-9-dependent proteolysis through engagement of LYVE-1 with the HA pericellular matrix of SMCs. Our study has unveiled a hitherto unknown homeostatic contribution of arterial LYVE-1+ macrophages through the control of collagen production by SMCs and has identified a function of LYVE-1 in leukocytes.
Assuntos
Colágeno/metabolismo , Glicoproteínas/metabolismo , Receptores de Hialuronatos/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Rigidez Vascular/fisiologia , Animais , Aorta/fisiologia , Feminino , Glicoproteínas/genética , Humanos , Ácido Hialurônico/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genéticaRESUMO
The liver is positioned at the interface between two routes traversed by pathogens in disseminating infection. Whereas blood-borne pathogens are efficiently cleared in hepatic sinusoids by Kupffer cells (KCs), it is unknown how the liver prevents dissemination of peritoneal pathogens accessing its outer membrane. We report here that the hepatic capsule harbors a contiguous cellular network of liver-resident macrophages phenotypically distinct from KCs. These liver capsular macrophages (LCMs) were replenished in the steady state from blood monocytes, unlike KCs that are embryonically derived and self-renewing. LCM numbers increased after weaning in a microbiota-dependent process. LCMs sensed peritoneal bacteria and promoted neutrophil recruitment to the capsule, and their specific ablation resulted in decreased neutrophil recruitment and increased intrahepatic bacterial burden. Thus, the liver contains two separate and non-overlapping niches occupied by distinct resident macrophage populations mediating immunosurveillance at these two pathogen entry points to the liver.
Assuntos
Células de Kupffer/fisiologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Fígado/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Peritônio/microbiologia , Animais , Comunicação Celular , Autorrenovação Celular , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Células de Kupffer/microbiologia , Fígado/microbiologia , Fígado/patologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Infiltração de Neutrófilos , Peritônio/patologiaRESUMO
Dendritic cells (DCs) encompass several cell subsets that collaborate to initiate and regulate immune responses. Proper DC localization determines their function and requires the tightly controlled action of chemokine receptors. All DC subsets express CXCR4, but the genuine contribution of this receptor to their biology has been overlooked. We addressed this question using natural CXCR4 mutants resistant to CXCL12-induced desensitization and harboring a gain of function that cause the warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS), a rare immunodeficiency associated with high susceptibility to the pathogenesis of human papillomavirus (HPV). We report a reduction in the number of circulating plasmacytoid DCs (pDCs) in WHIM patients, whereas that of conventional DCs is preserved. This pattern was reproduced in an original mouse model of WS, enabling us to show that the circulating pDC defect can be corrected upon CXCR4 blockade and that pDC differentiation and function are preserved, despite CXCR4 dysfunction. We further identified proper CXCR4 signaling as a critical checkpoint for Langerhans cell and DC migration from the skin to lymph nodes, with corollary alterations of their activation state and tissue inflammation in a model of HPV-induced dysplasia. Beyond providing new hypotheses to explain the susceptibility of WHIM patients to HPV pathogenesis, this study shows that proper CXCR4 signaling establishes a migration threshold that controls DC egress from CXCL12-containing environments and highlights the critical and subset-specific contribution of CXCR4 signal termination to DC biology.
Assuntos
Células Dendríticas/fisiologia , Inflamação/patologia , Doenças da Imunodeficiência Primária/fisiopatologia , Receptores CXCR4/fisiologia , Verrugas/fisiopatologia , Alphapapillomavirus/genética , Animais , Benzilaminas/farmacologia , Contagem de Células , Diferenciação Celular , Quimiocina CXCL12/fisiologia , Quimiotaxia , Ciclamos/farmacologia , Células Dendríticas/classificação , Epiderme/patologia , Feminino , Técnicas de Introdução de Genes , Genes Virais , Humanos , Inflamação/metabolismo , Células de Langerhans/fisiologia , Tecido Linfoide/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Especificidade de Órgãos , Parabiose , Doenças da Imunodeficiência Primária/sangue , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/patologia , Proteínas Recombinantes/metabolismo , Verrugas/sangue , Verrugas/genética , Verrugas/patologiaRESUMO
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Assuntos
Doenças Autoimunes/imunologia , Citometria de Fluxo , Infecções/imunologia , Neoplasias/imunologia , Animais , Doença Crônica , Humanos , Camundongos , Guias de Prática Clínica como AssuntoRESUMO
Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low-abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset-specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges.
Assuntos
Algoritmos , Corantes , ImunofenotipagemRESUMO
Motivation: Recent flow and mass cytometers generate datasets of dimensions 20 to 40 and a million single cells. From these, many tools facilitate the discovery of new cell populations associated with diseases or physiology. These new cell populations require the identification of new gating strategies, but gating strategies become exponentially more difficult to optimize when dimensionality increases. To facilitate this step, we developed Hypergate, an algorithm which given a cell population of interest identifies a gating strategy optimized for high yield and purity. Results: Hypergate achieves higher yield and purity than human experts, Support Vector Machines and Random-Forests on public datasets. We use it to revisit some established gating strategies for the identification of innate lymphoid cells, which identifies concise and efficient strategies that allow gating these cells with fewer parameters but higher yield and purity than the current standards. For phenotypic description, Hypergate's outputs are consistent with fields' knowledge and sparser than those from a competing method. Availability and implementation: Hypergate is implemented in R and available on CRAN. The source code is published at http://github.com/ebecht/hypergate under an Open Source Initiative-compliant licence. Supplementary information: Supplementary data are available at Bioinformatics online.
Assuntos
Separação Celular/métodos , Biologia Computacional , Citometria de Fluxo , Linfócitos/citologia , Humanos , Imunidade InataRESUMO
Pressure ulcers are a chronic problem for patients or the elderly who require extended periods of bed rest. The formation of ulcers is due to repeated cycles of ischemia-reperfusion (IR), which initiates an inflammatory response. Advanced ulcers disrupt the skin barrier, resulting in further complications. To date, the immunological aspect of skin IR has been understudied, partly due to the complexity of the skin immune cells. Through a combination of mass cytometry, confocal imaging and intravital multiphoton imaging, this study establishes a workflow for multidimensionality single cell analysis of skin myeloid cell responses in the context of IR injury with high spatiotemporal resolution. The data generated has provided us with previously uncharacterized insights into the distinct cellular behavior of resident dendritic cells (DCs) and recruited neutrophils post IR. Of interest, we observed a drop in DDC numbers in the IR region, which was subsequently replenished 48h post IR. More importantly, in these cells, we observe an attenuated response to repeated injuries, which may have implications in the subsequent wound healing process.
Assuntos
Células Dendríticas/imunologia , Neutrófilos/imunologia , Úlcera por Pressão/imunologia , Traumatismo por Reperfusão/imunologia , Pele/patologia , Idoso , Animais , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula ÚnicaRESUMO
Lymphangiogenesis is an important physiological response to inflammatory insult, acting to limit inflammation. Macrophages, dendritic cells, and lymphocytes are known to drive lymphangiogenesis. In this study, we show that neutrophils recruited to sites of inflammation can also coordinate lymphangiogenesis. In the absence of B cells, intranodal lymphangiogenesis induced during prolonged inflammation as a consequence of immunization is dependent on the accumulation of neutrophils. When neutrophils are depleted in wild-type mice developing skin inflammation in response to immunization or contact hypersensitization, lymphangiogenesis is decreased and local inflammation is increased. We demonstrate that neutrophils contribute to lymphangiogenesis primarily by modulating vascular endothelial growth factor (VEGF)-A bioavailability and bioactivity and, to a lesser extent, secreting VEGF-D. We further show that neutrophils increased VEGF-A bioavailability and bioactivity via the secretion of matrix metalloproteinases 9 and heparanase. Together, these findings uncover a novel function for neutrophils as organizers of lymphangiogenesis during inflammation.