Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(41): 25077-25087, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36056687

RESUMO

The molecular origins of homochirality on Earth is not understood well, particularly how enantiomerically enriched molecules of astrobiological significance like sugars and amino acids might have been synthesized on icy grains in space preceding their delivery to Earth. Polycyclic aromatic hydrocarbons (PAHs) identified in carbonaceous chondrites could have been processed in molecular clouds by circularly polarized light prior to the depletion of enantiomerically enriched helicenes onto carbonaceous grains resulting in chiral islands. However, the fundamental low temperature reaction mechanisms leading to racemic helicenes are still unknown. Here, by exploiting synchrotron based molecular beam photoionization mass spectrometry combined with electronic structure calculations, we provide compelling testimony on barrierless, low temperature pathways leading to racemates of [5] and [6]helicene. Astrochemical modeling advocates that gas-phase reactions in molecular clouds lead to racemates of helicenes suggesting a pathway for future astronomical observation and providing a fundamental understanding for the origin of homochirality on early Earth.


Assuntos
Meteoroides , Aminoácidos/química , Açúcares , Estereoisomerismo
2.
Phys Chem Chem Phys ; 23(34): 18495-18505, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612388

RESUMO

Despite remarkable progress toward the understanding of the formation pathways leading to polycyclic aromatic hydrocarbons (PAHs) in combustion systems and in deep space, the complex reaction pathways leading to nitrogen-substituted PAHs (NPAHs) at low temperatures of molecular clouds and hydrocarbon-rich, nitrogen-containing atmospheres of planets and their moons like Titan have remained largely obscure. Here, we demonstrate through laboratory experiments and computations that the simplest prototype of NPAHs - quinoline and isoquinoline (C9H7N) - can be synthesized via rapid and de-facto barrier-less reactions involving o-, m- and p-pyridinyl radicals (C5H4N˙) with vinylacetylene (C4H4) under low-temperature conditions.

3.
Phys Chem Chem Phys ; 22(39): 22493-22500, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32996974

RESUMO

The tricyclic polycyclic aromatic hydrocarbons (PAHs) 3H-cyclopenta[a]naphthalene (C13H10), 1H-cyclopenta[b]naphthalene (C13H10) and 1H-cyclopenta[a]naphthalene (C13H10) along with their indene-based bicyclic isomers (E)-5-(but-1-en-3-yn-1-yl)-1H-indene, (E)-6-(but-1-en-3-yn-1-yl)-1H-indene, 5-(but-3-ene-1-yn-1-yl)-1H-in-dene, and 6-(but-3-ene-1-yn-1-yl)-1H-indene were formed via a "directed synthesis" in a high-temperature chemical micro reactor at the temperature of 1300 ± 10 K through the reactions of the 5- and 6-indenyl radicals (C9H7˙) with vinylacetylene (C4H4). The isomer distributions were probed utilizing tunable vacuum ultraviolet light by recording the photoionization efficiency curves at mass-to-charge of m/z = 166 (C13H10) and 167 (13CC12H10) of the products in a supersonic molecular beam. The underlying reaction mechanisms involve the initial formation of van-der-Waals complexes followed by addition of the 5- and 6-indenyl radicals to vinylacetylene via submerged barriers, followed by isomerization (hydrogen shifts, ring closures), and termination via atomic hydrogen elimination accompanied by aromatization. All the barriers involved in the formation of 3H-cyclopenta[a]naphthalene, 1H-cyclopenta[b]naphthalene and 1H-cyclopenta[a]naphthalene are submerged with respect to the reactants indicating that the mechanisms are in fact barrierless, potentially forming PAHs via the hydrogen abstraction - vinylacetylene addition (HAVA) pathway in the cold molecular clouds such as Taurus Molecular Cloud-1 (TMC-1) at temperatures as low as 10 K.

4.
Angew Chem Int Ed Engl ; 59(28): 11334-11338, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32266773

RESUMO

A representative, low-temperature gas-phase reaction mechanism synthesizing polyacenes via ring annulation exemplified by the formation of pentacene (C22 H14 ) along with its benzo[a]tetracene isomer (C22 H14 ) is unraveled by probing the elementary reaction of the 2-tetracenyl radical (C18 H11 . ) with vinylacetylene (C4 H4 ). The pathway to pentacene-a prototype polyacene and a fundamental molecular building block in graphenes, fullerenes, and carbon nanotubes-is facilitated by a barrierless, vinylacetylene mediated gas-phase process thus disputing conventional hypotheses that synthesis of polycyclic aromatic hydrocarbons (PAHs) solely proceeds at elevated temperatures. This low-temperature pathway can launch isomer-selective routes to aromatic structures through submerged reaction barriers, resonantly stabilized free-radical intermediates, and methodical ring annulation in deep space eventually changing our perception about the chemistry of carbon in our universe.

5.
Angew Chem Int Ed Engl ; 59(10): 4051-4058, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31872513

RESUMO

A unified low-temperature reaction mechanism on the formation of acenes, phenacenes, and helicenes-polycyclic aromatic hydrocarbons (PAHs) that are distinct via the linear, zigzag, and ortho-condensed arrangements of fused benzene rings-is revealed. This mechanism is mediated through a barrierless, vinylacetylene mediated gas-phase chemistry utilizing tetracene, [4]phenacene, and [4]helicene as benchmarks contesting established ideas that molecular mass growth processes to PAHs transpire at elevated temperatures. This mechanism opens up an isomer-selective route to aromatic structures involving submerged reaction barriers, resonantly stabilized free-radical intermediates, and systematic ring annulation potentially yielding molecular wires along with racemic mixtures of helicenes in deep space. Connecting helicene templates to the Origins of Life ultimately changes our hypothesis on interstellar carbon chemistry.

6.
Chemphyschem ; 20(6): 791-797, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30710434

RESUMO

For the last decades, the hydrogen-abstraction-acetylene-addition (HACA) mechanism has been widely invoked to rationalize the high-temperature synthesis of PAHs as detected in carbonaceous meteorites (CM) and proposed to exist in the interstellar medium (ISM). By unravelling the chemistry of the 9-phenanthrenyl radical ([C14 H9 ]. ) with vinylacetylene (C4 H4 ), we present the first compelling evidence of a barrier-less pathway leading to a prototype tetracyclic PAH - triphenylene (C18 H12 ) - via an unconventional hydrogen abstraction-vinylacetylene addition (HAVA) mechanism operational at temperatures as low as 10 K. The barrier-less, exoergic nature of the reaction reveals HAVA as a versatile reaction mechanism that may drive molecular mass growth processes to PAHs and even two-dimensional, graphene-type nanostructures in cold environments in deep space thus leading to a better understanding of the carbon chemistry in our universe through the untangling of elementary reactions on the most fundamental level.

7.
Nat Commun ; 10(1): 1510, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944302

RESUMO

A synthetic route to racemic helicenes via a vinylacetylene mediated gas phase chemistry involving elementary reactions with aryl radicals is presented. In contrast to traditional synthetic routes involving solution chemistry and ionic reaction intermediates, the gas phase synthesis involves a targeted ring annulation involving free radical intermediates. Exploiting the simplest helicene as a benchmark, we show that the gas phase reaction of the 4-phenanthrenyl radical ([C14H9]•) with vinylacetylene (C4H4) yields [4]-helicene (C18H12) along with atomic hydrogen via a low-barrier mechanism through a resonance-stabilized free radical intermediate (C18H13). This pathway may represent a versatile mechanism to build up even more complex polycyclic aromatic hydrocarbons such as [5]- and [6]-helicene via stepwise ring annulation through bimolecular gas phase reactions in circumstellar envelopes of carbon-rich stars, whereas secondary reactions involving hydrogen atom assisted isomerization of thermodynamically less stable isomers of [4]-helicene might be important in combustion flames as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA