Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 21(12): 4673-4684, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32986422

RESUMO

Alpha-synuclein (aSyn) is a cytosolic, aggregation-prone protein that is associated with neurodegenerative disorders like Parkinson's disease. Interestingly, the protein can appear in different conformations, including monomeric and oligomeric forms as well as amyloid fibrils. Its individual structural constituents seem to be dependent on various factors and the composition of the respective cellular surroundings. Although under physiological conditions, most aSyn is found in the cytosol and synapses of neurons, aSyn can also be found in lysosomal compartments, where it gets degraded. We here compare the assembly speed, morphology, folding state, and spreading of aSyn at cytosolic pH (pH 7.4) and lysosomal pH (pH 5) using Thioflavin T, transmission electron microscopy, circular dichroism, and Fourier transform infrared spectroscopy. Interestingly, we found substantial differences between aSyn aggregation under neutral and acidic pH conditions, like those present in cytosolic and lysosomal cellular compartments. Also, lysosomal aSyn enriched from an aSyn-overexpressing cell line was able to seed aggregation in a concentration-dependent manner. Moreover, we observed that aSyn aggregates formed under in vitro lysosomal pH (pH 5) conditions were not stable at neutral pH and collapsed into partly soluble aggregates with changed structural characteristics. Our findings have meaningful implications in intracellular toxicity events as well as in lysis procedures for molecular and structural characterization of intracellular aSyn conformers.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Citosol , Humanos , Concentração de Íons de Hidrogênio , Lisossomos
2.
Nat Commun ; 15(1): 7545, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215031

RESUMO

Two-pore domain K+ (K2P) channel activity was previously thought to be controlled primarily via a selectivity filter (SF) gate. However, recent crystal structures of TASK-1 and TASK-2 revealed a lower gate at the cytoplasmic pore entrance. Here, we report functional evidence of such a lower gate in the K2P channel K2P17.1 (TALK-2, TASK-4). We identified compounds (drugs and lipids) and mutations that opened the lower gate allowing the fast modification of pore cysteine residues. Surprisingly, stimuli that directly target the SF gate (i.e., pHe., Rb+ permeation, membrane depolarization) also opened the cytoplasmic gate. Reciprocally, opening of the lower gate reduced the electric work to open the SF via voltage driven ion binding. Therefore, it appears that the SF is so rigidly locked into the TALK-2 protein structure that changes in ion occupancy can pry open a distant lower gate and, vice versa, opening of the lower gate concurrently promote SF gate opening. This concept might extent to other K+ channels that contain two gates (e.g., voltage-gated K+ channels) for which such a positive gate coupling has been suggested, but so far not directly demonstrated.


Assuntos
Ativação do Canal Iônico , Canais de Potássio de Domínios Poros em Tandem , Animais , Humanos , Citoplasma/metabolismo , Células HEK293 , Íons/metabolismo , Mutação , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA