Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mem Inst Oswaldo Cruz ; 118: e230122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937604

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) is a human gammaherpesvirus etiologically linked to several benign and malignant diseases. EBV-associated malignancies exhibit an unusual global distribution that might be partly attributed to virus and host genetic backgrounds. OBJECTIVES: To assemble a new genome of EBV (CEMO3) from a paediatric Burkitt's lymphoma from Rio de Janeiro State (Southeast Brazil). In addition, to perform global phylogenetic analysis using complete EBV genomes, including CEMO3, and investigate the genetic relationship of some South American (SA) genomes through EBV subgenomic targets. METHODS: CEMO3 was sequenced through next generation sequencing and its coverage and gaps were corrected through the Sanger method. CEMO3 and 67 EBV genomes representing diverse geographic regions were evaluated through maximum likelihood phylogenetic analysis. Further, the polymorphism of subgenomic regions of some SA EBV genomes were assessed. FINDINGS: The whole bulk tumour sequencing yielded 23,217 reads related to EBV, which 172,713 base pairs of the newly EBV genome CEMO3 was assembled. The CEMO3 and most SA EBV genomes clustered within the SA subclade closely related to the African Raji strain, forming the South American/Raji clade. Notably, these Raji-related genomes exhibit significant genetic diversity, characterised by distinctive synapomorphies at some gene levels absent in the original Raji strain. CONCLUSION: The CEMO3 represents a new South American EBV genome assembled. Albeit the majority of EBV genomes from SA are Raji-related, it harbours a high diversity different from the original Raji strain.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Criança , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Filogenia , Genoma Viral/genética , Brasil
2.
Bioinformatics ; 33(6): 807-813, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27259539

RESUMO

Motivation: To attain acceptable sample misassignment rates, current approaches to multiplex single-molecule real-time sequencing require upstream quality improvement, which is obtained from multiple passes over the sequenced insert and significantly reduces the effective read length. In order to fully exploit the raw read length on multiplex applications, robust barcodes capable of dealing with the full single-pass error rates are needed. Results: We present a method for designing sequencing barcodes that can withstand a large number of insertion, deletion and substitution errors and are suitable for use in multiplex single-molecule real-time sequencing. The manuscript focuses on the design of barcodes for full-length single-pass reads, impaired by challenging error rates in the order of 11%. The proposed barcodes can multiplex hundreds or thousands of samples while achieving sample misassignment probabilities as low as 10-7 under the above conditions, and are designed to be compatible with chemical constraints imposed by the sequencing process. Availability and Implementation: Software tools for constructing watermark barcode sets and demultiplexing barcoded reads, together with example sets of barcodes and synthetic barcoded reads, are freely available at www.cifasis-conicet.gov.ar/ezpeleta/NS-watermark . Contact: ezpeleta@cifasis-conicet.gov.ar.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software , Simulação por Computador
3.
Sci Rep ; 12(1): 7619, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538127

RESUMO

Nucleic-acid barcoding is an enabling technique for many applications, but its use remains limited in emerging long-read sequencing technologies with intrinsically low raw accuracy. Here, we apply so-called NS-watermark barcodes, whose error correction capability was previously validated in silico, in a proof of concept where we synthesize 3840 NS-watermark barcodes and use them to asymmetrically tag and simultaneously sequence amplicons from two evolutionarily distant species (namely Bordetella pertussis and Drosophila mojavensis) on the ONT MinION platform. To our knowledge, this is the largest number of distinct, non-random tags ever sequenced in parallel and the first report of microarray-based synthesis as a source for large oligonucleotide pools for barcoding. We recovered the identity of more than 86% of the barcodes, with a crosstalk rate of 0.17% (i.e., one misassignment every 584 reads). This falls in the range of the index hopping rate of established, high-accuracy Illumina sequencing, despite the increased number of tags and the relatively low accuracy of both microarray-based synthesis and long-read sequencing. The robustness of NS-watermark barcodes, together with their scalable design and compatibility with low-cost massive synthesis, makes them promising for present and future sequencing applications requiring massive labeling, such as long-read single-cell RNA-Seq.


Assuntos
Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala , Código de Barras de DNA Taxonômico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
4.
Oncoimmunology ; 7(5): e1389821, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721365

RESUMO

Interleukin-10 (IL10) is an immune regulatory cytokine. Single nucleotide polymorphisms (SNPs) in IL10 promoter have been associated with prognosis in adult classical Hodgkin lymphoma (cHL). We analyzed IL10 SNPs -1082 and -592 in respect of therapy response, gene expression and tumor microenvironment (TME) composition in 98 pediatric patients with cHL. As confirmatory results, we found that -1082AA/AG; -592CC genotypes and ATA haplotype were associated with unfavourable prognosis: Progression-free survival (PFS) was shorter in -1082AA+AG (72.2%) than in GG patients (100%) (P = 0.024), and in -592AA (50%) and AC (74.2%) vs. CC patients (87.0%) (P = 0.009). In multivariate analysis, the -592CC genotype and the ATA haplotype retained prognostic impact (HR: 0.41, 95% CI 0.2-0.86; P = 0.018, and HR: 3.06 95% CI 1.03-9.12; P = 0.044, respectively). Our analysis further led to some new observations, namely: (1) Low IL10 mRNA expression was associated with -1082GG genotype (P = 0.014); (2) IL10 promoter polymorphisms influence TME composition;-1082GG/-592CC carriers showed low numbers of infiltrating cells expressing MAF transcription factor (20 vs. 78 and 49 vs. 108 cells/mm2, respectively; P< 0.05); while ATA haplotype (high expression) associated with high numbers of MAF+ cells (P = 0.005). Specifically, -1082GG patients exhibited low percentages of CD68+MAF+ (M2-like) intratumoral macrophages (15.04% vs. 47.26%, P = 0.017). Considering ours as an independent validation cohort, our results give support to the clinical importance of IL10 polymorphisms in the full spectrum of cHL, and advance the concept of genetic control of microenvironment composition as a basis for susceptibility and therapeutic response.

5.
Mem. Inst. Oswaldo Cruz ; 118: e230122, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1521242

RESUMO

BACKGROUND Epstein-Barr virus (EBV) is a human gammaherpesvirus etiologically linked to several benign and malignant diseases. EBV-associated malignancies exhibit an unusual global distribution that might be partly attributed to virus and host genetic backgrounds. OBJECTIVES To assemble a new genome of EBV (CEMO3) from a paediatric Burkitt's lymphoma from Rio de Janeiro State (Southeast Brazil). In addition, to perform global phylogenetic analysis using complete EBV genomes, including CEMO3, and investigate the genetic relationship of some South American (SA) genomes through EBV subgenomic targets. METHODS CEMO3 was sequenced through next generation sequencing and its coverage and gaps were corrected through the Sanger method. CEMO3 and 67 EBV genomes representing diverse geographic regions were evaluated through maximum likelihood phylogenetic analysis. Further, the polymorphism of subgenomic regions of some SA EBV genomes were assessed. FINDINGS The whole bulk tumour sequencing yielded 23,217 reads related to EBV, which 172,713 base pairs of the newly EBV genome CEMO3 was assembled. The CEMO3 and most SA EBV genomes clustered within the SA subclade closely related to the African Raji strain, forming the South American/Raji clade. Notably, these Raji-related genomes exhibit significant genetic diversity, characterised by distinctive synapomorphies at some gene levels absent in the original Raji strain. CONCLUSION The CEMO3 represents a new South American EBV genome assembled. Albeit the majority of EBV genomes from SA are Raji-related, it harbours a high diversity different from the original Raji strain.

6.
G3 (Bethesda) ; 6(10): 3027-3034, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27565886

RESUMO

In plants, fruit maturation and oxidative stress can induce small heat shock protein (sHSP) synthesis to maintain cellular homeostasis. Although the tomato reference genome was published in 2012, the actual number and functionality of sHSP genes remain unknown. Using a transcriptomic (RNA-seq) and evolutionary genomic approach, putative sHSP genes in the Solanum lycopersicum (cv. Heinz 1706) genome were investigated. A sHSP gene family of 33 members was established. Remarkably, roughly half of the members of this family can be explained by nine independent tandem duplication events that determined, evolutionarily, their functional fates. Within a mitochondrial class subfamily, only one duplicated member, Solyc08g078700, retained its ancestral chaperone function, while the others, Solyc08g078710 and Solyc08g078720, likely degenerated under neutrality and lack ancestral chaperone function. Functional conservation occurred within a cytosolic class I subfamily, whose four members, Solyc06g076570, Solyc06g076560, Solyc06g076540, and Solyc06g076520, support ∼57% of the total sHSP RNAm in the red ripe fruit. Subfunctionalization occurred within a new subfamily, whose two members, Solyc04g082720 and Solyc04g082740, show heterogeneous differential expression profiles during fruit ripening. These findings, involving the birth/death of some genes or the preferential/plastic expression of some others during fruit ripening, highlight the importance of tandem duplication events in the expansion of the sHSP gene family in the tomato genome. Despite its evolutionary diversity, the sHSP gene family in the tomato genome seems to be endowed with a core set of four homeostasis genes: Solyc05g014280, Solyc03g082420, Solyc11g020330, and Solyc06g076560, which appear to provide a baseline protection during both fruit ripening and heat shock stress in different tomato tissues.


Assuntos
Duplicação Gênica , Genes de Plantas , Proteínas de Choque Térmico Pequenas/genética , Família Multigênica , Solanum lycopersicum/genética , Sequências de Repetição em Tandem , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico Pequenas/classificação , Proteínas de Choque Térmico Pequenas/metabolismo , Solanum lycopersicum/metabolismo , Anotação de Sequência Molecular , Filogenia , Transporte Proteico , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA