Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113899

RESUMO

The detection of ignitable liquids (ILs) can be crucial when it comes to determining arson cases. Such identification of ILs is a challenging task that may be affected by a number of factors. Microbial degradation is considered one of three major processes that can alter the composition of IL residues. Since biodegradation is a time related phenomenon, it should be studied at different stages of development. This article presents a method based on ion mobility spectroscopy (IMS) which has been used as an electronic nose. In particular, ion mobility sum spectrum (IMSS) in combination with chemometric techniques (hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA)) has been applied for the characterization of different biodegraded ILs. This method intends to use IMSS to identify a range of ILs regardless of their degree of biodegradation. Three ILs (diesel, gasoline and kerosene) from three different commercial brands were evaluated after remaining in a soil substrate for several lengths of time (0, 2, 5, 13 and 38 days). The HCA results showed the samples' trend to fall into categories characterized by ILs type and biodegradation time. The LDAs allowed a 99% successful classification of the samples according to the IL type. This is the first time that an HS-IMS technique has been used to detect ILs that have undergone biodegradation processes. The results show that IMS may be a promising alternative to the current standard method based on gas-chromatography for the analysis of biodegraded ILs. Furthermore, no pretreatment of the samples nor the use of a solvent is required.

2.
Molecules ; 24(5)2019 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30832328

RESUMO

The bioactive compounds in myrtle berries, such as phenolic compounds and anthocyanins, have shown a potentially positive effect on human health. Efficient extraction methods are to be used to obtain maximum amounts of such beneficial compounds from myrtle. For that reason, this study evaluates the effectiveness of a rapid ultrasound-assisted method (UAE) to extract anthocyanins and phenolic compounds from myrtle berries. The influence of solvent composition, as well as pH, temperature, ultrasound amplitude, cycle and solvent-sample ratio on the total phenolic compounds and anthocyanins content in the extracts obtained were evaluated. The response variables were optimized by means of a Box-Behnken design. It was found that the double interaction of the methanol composition and the cycle, the interaction between methanol composition and temperature, and the interaction between the cycle and solvent-sample ratio were the most influential variables on the extraction of total phenolic compounds (92.8% methanol in water, 0.2 s of cycle, 60 °C and 10:0.5 mL:g). The methanol composition and the interaction between methanol composition and pH were the most influential variables on the extraction of anthocyanins (74.1% methanol in water at pH 7). The methods that have been developed presented high repeatability and intermediate precision (RSD < 5%) and the bioactive compounds show a high recovery with short extraction times. Both methods were used to analyze the composition of the bioactive compounds in myrtle berries collected from different locations in the province of Cadiz (Spain). The results obtained by UAE were compared to those achieved in a previous study where microwave-assisted extraction (MAE) methods were employed. Similar extraction yields were obtained for phenolic compounds and anthocyanins by MAE and UAE under optimal conditions. However, UAE presents the advantage of using milder conditions for the extraction of anthocyanins from myrtle, which makes of this a more suitable method for the extraction of these degradable compounds.


Assuntos
Antocianinas/química , Myrtus/química , Fenóis/química , Extratos Vegetais/química , Antocianinas/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Frutas/química , Humanos , Fenóis/isolamento & purificação , Folhas de Planta/química , Solventes/química , Espanha , Ondas Ultrassônicas
3.
Molecules ; 23(11)2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30453481

RESUMO

The phenolic compounds and anthocyanins present in myrtle berries are responsible for its beneficial health properties. In the present study, a new, microwave-assisted extraction for the analysis of both phenolic compounds and anthocyanins from myrtle pulp has been developed. Different extraction variables, including methanol composition, pH, temperature, and sample⁻solvent ratio were optimized by applying a Box⁻Behnken design and response surface methodology. Methanol composition and pH were the most influential variables for the total phenolic compounds (58.20% of the solvent in water at pH 2), and methanol composition and temperature for anthocyanins (50.4% of solvent at 50 °C). The methods developed showed high repeatability and intermediate precision (RSD < 5%). Both methods were applied to myrtle berries collected in two different areas of the province of Cadiz (Spain). Hierarchical clustering analysis results show that the concentration of bioactive compounds in myrtle is related to their geographical origin.


Assuntos
Antocianinas/análise , Extração Líquido-Líquido/métodos , Micro-Ondas , Myrtus/química , Fenóis/análise , Extratos Vegetais/química , Antocianinas/isolamento & purificação , Metanol/química , Fenóis/isolamento & purificação
4.
Pharmaceuticals (Basel) ; 16(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37242498

RESUMO

The population is now more aware of their diets due to the connection between food and general health. Onions (Allium cepa L.), common vegetables that are minimally processed and grown locally, are known for their health-promoting properties. The organosulfur compounds present in onions have powerful antioxidant properties and may decrease the likelihood of developing certain disorders. It is vital to employ an optimum approach with the best qualities for studying the target compounds to undertake a thorough analysis of these compounds. In this study, the use of a direct thermal desorption-gas chromatography-mass spectrometry method with a Box-Behnken design and multi-response optimization is proposed. Direct thermal desorption is an environmentally friendly technique that eliminates the use of solvents and requires no prior preparation of the sample. To the author's knowledge, this methodology has not been previously used to study the organosulfur compounds in onions. Likewise, the optimal conditions for pre-extraction and post-analysis of organosulfur compounds were as follows: 46 mg of onion in the tube, a desorption heat of 205 °C for 960 s, and a trap heat of 267 °C for 180 s. The repeatability and intermediate precision of the method were evaluated by conducting 27 tests over three consecutive days. The results obtained for all compounds studied revealed CV values ranging from 1.8% to 9.9%. The major compound reported in onions was 2,4-dimethyl-thiophene, representing 19.4% of the total area of sulfur compounds. The propanethial S-oxide, the principal compound responsible for the tear factor, accounted for 4.5% of the total area.

5.
J Fungi (Basel) ; 8(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628800

RESUMO

The demand and interest in mushrooms, both cultivated and wild, has increased among consumers in recent years due to a better understanding of the benefits of this food. However, the ability of wild edible mushrooms to accumulate essential and toxic elements is well documented. In this study, a total of eight metallic elements and metalloids (chromium (Cr), arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb), copper (Cu), zinc (Zn), and selenium (Se)) were determined by ICP-MS in five wild edible mushroom species (Agaricus silvicola, Amanita caesarea, Boletus aereus, Boletus edulis, and Russula cyanoxantha) collected in southern Spain and northern Morocco. Overall, Zn was found to be the predominant element among the studied species, followed by Cu and Se. The multivariate analysis suggested that considerable differences exist in the uptake of the essential and toxic elements determined, linked to species-intrinsic factors. Furthermore, the highest Estimated Daily Intake of Metals (EDIM) values obtained were observed for Zn. The Health Risk Index (HRI) assessment for all the mushroom species studied showed a Hg-related cause of concern due to the frequent consumption of around 300 g of fresh mushrooms per day during the mushrooming season.

6.
Antioxidants (Basel) ; 11(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36552601

RESUMO

Nowadays, consumers demand bioactive foods that have the potential to limit the risk of suffering from several medical conditions. Onions present these desirable capabilities owing to its high content in antioxidant bioactive compounds. This work has used a Box-Behnken design with a response surface methodology to determine the best conditions in which to extract the polyphenols that are found in onions. Two extraction methods-one for the extraction of total flavonols and another one intended to obtain extracts with the highest possible antioxidant activity-have been developed and optimized. The following factors have been studied: temperature, %methanol in water, solvent pH, and sample-solvent volumetric ratio. The optimal conditions for the extraction of flavonols were 93.8% methanol in water, pH 2, 50 °C extraction temperature and 0.2:17.9 g:mL sample-solvent ratio. The best antioxidant activity levels were registered when using 74.2% methanol in water, pH 2, 99.9 °C extraction temperature and 0.2:18.2 g:mL sample-solvent ratio. Both optimized methods used short extraction times, and presented good precision levels and successful results when used with an assortment of onion varieties. According to total flavonols and antioxidant activity data, with 7.557 ± 0.3261 and 12.08 ± 0.0379 mg g-1, respectively, the developed methods achieved comparable or even superior results to those obtained by other authors.

7.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915768

RESUMO

Onion, one of the most consumed vegetables in the world, is also known to contain high levels of antioxidant compounds, with protective effects against different degenerative pathologies. Specifically, onion is rich in flavonols, mainly quercetin derivatives, which are compounds with high antioxidant and free radical scavenging power. For this reason, it is of the utmost importance to count on optimal analytical methods that allow for the determination and quantification of these compounds of interest. A rapid ultra-high performance liquid chromatography (UHPLC)-photo-diode array (PDA) method for the separation of the major flavonols in onions was developed using a Box-Behnken design in conjunction with multiresponse optimization on the basis of the desirability function. The conditions that provided a successful separation were 9.9% and 53.2% of phase B at the beginning and at the end of the gradient, respectively; 55 °C column working temperature; and 0.6 mL min-1 flow rate. The complete separation was achieved in less than 2.7 min with excellent chromatographic characteristics. The method was validated, and its high precision, low detection and quantification limits, good linearity, and robustness were confirmed. The correct applicability of the method improves the analysis of the raw material, increasing the quality of onions and its subproducts in terms of bioactive compounds and functional characteristics for consumers.

8.
Food Chem ; 334: 127569, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32707360

RESUMO

Grapes are a great source of phenolic compounds, which have excellent antioxidant properties. Efficient analytical methods are necessary to selectively and precisely determine these compounds content in grapes. In this study, a reverse-phase ultra-high performance liquid chromatography (UHPLC) method with fluorescence and photodiode array detection has been developed to determine and quantify 27 of the main phenolic compounds present in grapes. An ACQUITY UPLC® BEH C18 (50 mm × 2.1 mm i.d., 1.7 mm particle size) column was employed. A gradient method was developed and column temperature (25-55 °C), as well as flow rate (0.6-0.75 mL min-1), were optimized. The optimum conditions allowed the separation of all the compounds in less than 9 min. The method was validated and demonstrated excellent detection and quantification limits, precision, and selectivity. Finally, several grape varieties were studied in order to demonstrate the applicability of the method to the analysis of real matrix samples.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Frutas/química , Vitis/química , Flavonoides/isolamento & purificação , Limite de Detecção , Fenóis/análise , Fenóis/isolamento & purificação , Sensibilidade e Especificidade
9.
Plants (Basel) ; 9(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957596

RESUMO

Peppers are fruits with wide genetic variability and multiple ways of being consumed that hold a relevant position in the human diet. Nowadays, consumers are interested in new gastronomic experiences provided by pepper cultivars that present new shapes, colors, and flavors while preserving their bioactive compounds, such as their capsaicinoids and capsinoids. However, numerous changes take place during their development that may alter their biological properties. Therefore, this work evaluates the capsaicinoid and capsiate contents in two traditional varieties of ornamental peppers ("Filius Blue" and "Filius Green'") during fruit maturation. The aim is to determine the ideal harvesting moment depending on the farmer's objective (e.g., achieving a specific color, shape, or flavor; achieving the maximum concentrations of bioactive compounds). The capsaicinoid contents followed different patterns in the two varieties analyzed. The "Filius Blue" variety exhibited increasing concentrations of capsaicinoids up to the 41st day post-anthesis (dpa), from which point on this trend was reversed. The concentrations in the "Filius Green" variety increased and decreased several times, reaching maximum concentrations on the 69th dpa. Regarding capsiate contents, both varieties varied in the same way, reaching maximum concentrations on the 34th dpa and then decreasing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA