Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Development ; 148(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473253

RESUMO

The STAT3 transcription factor, acting both in the nucleus and mitochondria, maintains embryonic stem cell pluripotency and promotes their proliferation. In this work, using zebrafish, we determined in vivo that mitochondrial STAT3 regulates mtDNA transcription in embryonic and larval stem cell niches and that this activity affects their proliferation rates. As a result, we demonstrated that import of STAT3 inside mitochondria requires Y705 phosphorylation by Jak, whereas its mitochondrial transcriptional activity, as well as its effect on proliferation, depends on the MAPK target S727. These data were confirmed using mouse embryonic stem cells: although the Y705-mutated STAT3 cannot enter mitochondria, the S727 mutation does not affect import into the organelle and is responsible for STAT3-dependent mitochondrial transcription. Surprisingly, STAT3-dependent increase of mitochondrial transcription appears to be independent from STAT3 binding to STAT3-responsive elements. Finally, loss-of-function experiments, with chemical inhibition of the JAK/STAT3 pathway or genetic ablation of stat3 gene, demonstrated that STAT3 is also required for cell proliferation in the intestine of zebrafish.


Assuntos
Proliferação de Células , Células-Tronco Embrionárias/citologia , Mitocôndrias/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Sistema Nervoso Central/embriologia , DNA Mitocondrial/metabolismo , Embrião não Mamífero , Células-Tronco Embrionárias/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Intestinos/embriologia , Janus Quinases/metabolismo , Mutação , Fosforilação , Fator de Transcrição STAT3/genética , Transdução de Sinais , Transcrição Gênica , Ativação Transcricional , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
2.
Development ; 147(12)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32467235

RESUMO

The transcription factor Stat3 is required for proliferation and pluripotency of embryonic stem cells; we have prepared and characterized fluorescent Stat3-reporter zebrafish based on repeats of minimal responsive elements. These transgenic lines mimic in vivo Stat3 expression patterns and are responsive to exogenous Stat3; notably, fluorescence is inhibited by both stat3 knockout and IL6/Jak/STAT inhibitors. At larval stages, Stat3 reporter activity correlates with proliferating regions of the brain, haematopoietic tissue and intestine. In the adult gut, the reporter is active in sparse proliferating cells, located at the base of intestinal folds, expressing the stemness marker sox9b and having the morphology of mammalian crypt base columnar cells; noteworthy, zebrafish stat3 mutants show defects in intestinal folding. Stat3 reporter activity in the gut is abolished with mutation of T cell factor 4 (Tcf7l2), the intestinal mediator of Wnt/ß-catenin-dependent transcription. The Wnt/ß-catenin dependence of Stat3 activity in the gut is confirmed by abrupt expansion of Stat3-positive cells in intestinal adenomas of apc heterozygotes. Our findings indicate that Jak/Stat3 signalling is needed for intestinal stem cell maintenance and possibly crucial in controlling Wnt/ß-catenin-dependent colorectal cancer cell proliferation.


Assuntos
Mucosa Intestinal/metabolismo , Fator de Transcrição STAT3/metabolismo , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Intestinos/crescimento & desenvolvimento , Intestinos/fisiologia , Janus Quinase 1 , Larva/crescimento & desenvolvimento , Larva/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição SOX9/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/deficiência , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , beta Catenina/metabolismo
3.
Biol Res ; 56(1): 19, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37106439

RESUMO

BACKGROUND: AMBRA1 is an intrinsically disordered protein, working as a scaffold molecule to coordinate, by protein-protein interaction, many cellular processes, including autophagy, mitophagy, apoptosis and cell cycle progression. The zebrafish genome contains two ambra1 paralogous genes (a and b), both involved in development and expressed at high levels in the gonads. Characterization of the zebrafish paralogous genes mutant lines generated by CRISPR/Cas9 approach showed that ambra1b knockout leads to an all-male population. RESULTS: We demonstrated that the silencing of the ambra1b gene determines a reduction of primordial germ cells (PGCs), a condition that, in the zebrafish, leads to the development of all-male progeny. PGC reduction was confirmed by knockdown experiments and rescued by injection of ambra1b and human AMBRA1 mRNAs, but not ambra1a mRNA. Moreover, PGC loss was not rescued by injection with human AMBRA1 mRNA mutated in the CUL4-DDB1 binding region, thus suggesting that interaction with this complex is involved in PGC protection from loss. Results from zebrafish embryos injected with murine Stat3 mRNA and stat3 morpholino suggest that Ambra1b could indirectly regulate this protein through CUL4-DDB1 interaction. According to this, Ambra1+/- mice showed a reduced Stat3 expression in the ovary together with a low number of antral follicles and an increase of atretic follicles, indicating a function of Ambra1 in the ovary of mammals as well. Moreover, in agreement with the high expression of these genes in the testis and ovary, we found significant impairment of the reproductive process and pathological alterations, including tumors, mainly limited to the gonads. CONCLUSIONS: By exploiting ambra1a and ambra1b knockout zebrafish lines, we prove the sub-functionalization between the two paralogous zebrafish genes and uncover a novel function of Ambra1 in the protection from excessive PGC loss, which seems to require binding with the CUL4-DDB1 complex. Both genes seem to play a role in the regulation of reproductive physiology.


Assuntos
Diferenciação Sexual , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Germinativas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Reprodução , RNA Mensageiro/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176020

RESUMO

Muscular dystrophies (MDs) are a heterogeneous group of myopathies characterized by progressive muscle weakness leading to death from heart or respiratory failure. MDs are caused by mutations in genes involved in both the development and organization of muscle fibers. Several animal models harboring mutations in MD-associated genes have been developed so far. Together with rodents, the zebrafish is one of the most popular animal models used to reproduce MDs because of the high level of sequence homology with the human genome and its genetic manipulability. This review describes the most important zebrafish mutant models of MD and the most advanced tools used to generate and characterize all these valuable transgenic lines. Zebrafish models of MDs have been generated by introducing mutations to muscle-specific genes with different genetic techniques, such as (i) N-ethyl-N-nitrosourea (ENU) treatment, (ii) the injection of specific morpholino, (iii) tol2-based transgenesis, (iv) TALEN, (v) and CRISPR/Cas9 technology. All these models are extensively used either to study muscle development and function or understand the pathogenetic mechanisms of MDs. Several tools have also been developed to characterize these zebrafish models by checking (i) motor behavior, (ii) muscle fiber structure, (iii) oxidative stress, and (iv) mitochondrial function and dynamics. Further, living biosensor models, based on the expression of fluorescent reporter proteins under the control of muscle-specific promoters or responsive elements, have been revealed to be powerful tools to follow molecular dynamics at the level of a single muscle fiber. Thus, zebrafish models of MDs can also be a powerful tool to search for new drugs or gene therapies able to block or slow down disease progression.


Assuntos
Doenças Musculares , Distrofias Musculares , Animais , Humanos , Peixe-Zebra/genética , Distrofias Musculares/genética , Animais Geneticamente Modificados/genética , Fibras Musculares Esqueléticas/patologia
5.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108275

RESUMO

In vertebrates, two homologous heterotetrameric AP1 complexes regulate the intracellular protein sorting via vesicles. AP-1 complexes are ubiquitously expressed and are composed of four different subunits: γ, ß1, µ1 and σ1. Two different complexes are present in eukaryotic cells, AP1G1 (contains γ1 subunit) and AP1G2 (contains γ2 subunit); both are indispensable for development. One additional tissue-specific isoform exists for µ1A, the polarized epithelial cells specific to µ1B; two additional tissue-specific isoforms exist for σ1A: σ1B and σ1C. Both AP1 complexes fulfil specific functions at the trans-Golgi network and endosomes. The use of different animal models demonstrated their crucial role in the development of multicellular organisms and the specification of neuronal and epithelial cells. Ap1g1 (γ1) knockout mice cease development at the blastocyst stage, while Ap1m1 (µ1A) knockouts cease during mid-organogenesis. A growing number of human diseases have been associated with mutations in genes encoding for the subunits of adaptor protein complexes. Recently, a new class of neurocutaneous and neurometabolic disorders affecting intracellular vesicular traffic have been referred to as adaptinopathies. To better understand the functional role of AP1G1 in adaptinopathies, we generated a zebrafish ap1g1 knockout using CRISPR/Cas9 genome editing. Zebrafish ap1g1 knockout embryos cease their development at the blastula stage. Interestingly, heterozygous females and males have reduced fertility and showed morphological alterations in the brain, gonads and intestinal epithelium. An analysis of mRNA profiles of different marker proteins and altered tissue morphologies revealed dysregulated cadherin-mediated cell adhesion. These data demonstrate that the zebrafish model organism enables us to study the molecular details of adaptinopathies and thus also develop treatment strategies.


Assuntos
Transtornos do Neurodesenvolvimento , Fator de Transcrição AP-1 , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Camundongos , Endossomos/metabolismo , Células Epiteliais/metabolismo , Isoformas de Proteínas/metabolismo , Rede trans-Golgi/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Transtornos do Neurodesenvolvimento/genética , Fator de Transcrição AP-1/metabolismo , Proteínas de Peixe-Zebra/metabolismo
6.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361705

RESUMO

Coenzyme A (CoA) is an essential cofactor in all living organisms, being involved in a large number of chemical reactions. Sequence variations in pantothenate kinase 2 (PANK2), the first enzyme of CoA biosynthesis, are found in patients affected by Pantothenate Kinase Associated Neurodegeneration (PKAN), one of the most common forms of neurodegeneration, with brain iron accumulation. Knowledge about the biochemical and molecular features of this disorder has increased a lot in recent years. Nonetheless, the main culprit of the pathology is not well defined, and no treatment option is available yet. In order to contribute to the understanding of this disease and facilitate the search for therapies, we explored the potential of the zebrafish animal model and generated lines carrying biallelic mutations in the pank2 gene. The phenotypic characterization of pank2-mutant embryos revealed anomalies in the development of venous vascular structures and germ cells. Adult fish showed testicular atrophy and altered behavioral response in an anxiety test but no evident signs of neurodegeneration. The study suggests that selected cell and tissue types show a higher vulnerability to pank2 deficiency in zebrafish. Deciphering the biological basis of this phenomenon could provide relevant clues for better understanding and treating PKAN.


Assuntos
Neurodegeneração Associada a Pantotenato-Quinase , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Neurodegeneração Associada a Pantotenato-Quinase/genética , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Mutação , Coenzima A/genética , Atrofia
7.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163566

RESUMO

The Helicobacter pylori Neutrophil Activating Protein (HP-NAP) is endowed with immunomodulatory properties that make it a potential candidate for anticancer therapeutic applications. By activating cytotoxic Th1 responses, HP-NAP inhibits the growth of bladder cancer and enhances the anti-tumor activity of oncolytic viruses in the treatment of metastatic breast cancer and neuroendocrine tumors. The possibility that HP-NAP exerts its anti-tumor effect also by modulating the activity of innate immune cells has not yet been explored. Taking advantage of the zebrafish model, we examined the therapeutic efficacy of HP-NAP against metastatic human melanoma, limiting the observational window to 9 days post-fertilization, well before the maturation of the adaptive immunity. Human melanoma cells were xenotransplanted into zebrafish embryos and tracked in the presence or absence of HP-NAP. The behavior and phenotype of macrophages and the impact of their drug-induced depletion were analyzed exploiting macrophage-expressed transgenes. HP-NAP administration efficiently inhibited tumor growth and metastasis and this was accompanied by strong recruitment of macrophages with a pro-inflammatory profile at the tumor site. The depletion of macrophages almost completely abrogated the ability of HP-NAP to counteract tumor growth. Our findings highlight the pivotal role of activated macrophages in counteracting melanoma growth and support the notion that HP-NAP might become a new biological therapeutic agent for the treatment of metastatic melanomas.


Assuntos
Proteínas de Bactérias/administração & dosagem , Macrófagos/metabolismo , Melanoma/tratamento farmacológico , Animais , Proteínas de Bactérias/imunologia , Linhagem Celular Tumoral , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Melanoma/imunologia , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
8.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269817

RESUMO

Glucocorticoids mainly exert their biological functions through their cognate receptor, encoded by the nr3c1 gene. Here, we analysed the glucocorticoids mechanism of action taking advantage of the availability of different zebrafish mutant lines for their receptor. The differences in gene expression patterns between the zebrafish gr knock-out and the grs357 mutant line, in which a point mutation prevents binding of the receptor to the hormone-responsive elements, reveal an intricate network of GC-dependent transcription. Particularly, we show that Stat3 transcriptional activity mainly relies on glucocorticoid receptor GR tethering activity: several Stat3 target genes are induced upon glucocorticoid GC exposure both in wild type and in grs357/s357 larvae, but not in gr knock-out zebrafish. To understand the interplay between GC, their receptor, and the mineralocorticoid receptor, which is evolutionarily and structurally related to the GR, we generated an mr knock-out line and observed that several GC-target genes also need a functional mineralocorticoid receptor MR to be correctly transcribed. All in all, zebrafish mutants and transgenic models allow in vivo analysis of GR transcriptional activities and interactions with other transcription factors such as MR and Stat3 in an in-depth and rapid way.


Assuntos
Receptores de Mineralocorticoides , Peixe-Zebra , Animais , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transcrição Gênica , Peixe-Zebra/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(37): 9948-9953, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28851829

RESUMO

Glucocorticoid (GC) and hypoxic transcriptional responses play a central role in tissue homeostasis and regulate the cellular response to stress and inflammation, highlighting the potential for cross-talk between these two signaling pathways. We present results from an unbiased in vivo chemical screen in zebrafish that identifies GCs as activators of hypoxia-inducible factors (HIFs) in the liver. GCs activated consensus hypoxia response element (HRE) reporters in a glucocorticoid receptor (GR)-dependent manner. Importantly, GCs activated HIF transcriptional responses in a zebrafish mutant line harboring a point mutation in the GR DNA-binding domain, suggesting a nontranscriptional route for GR to activate HIF signaling. We noted that GCs increase the transcription of several key regulators of glucose metabolism that contain HREs, suggesting a role for GC/HIF cross-talk in regulating glucose homeostasis. Importantly, we show that GCs stabilize HIF protein in intact human liver tissue and isolated hepatocytes. We find that GCs limit the expression of Von Hippel Lindau protein (pVHL), a negative regulator of HIF, and that treatment with the c-src inhibitor PP2 rescued this effect, suggesting a role for GCs in promoting c-src-mediated proteosomal degradation of pVHL. Our data support a model for GCs to stabilize HIF through activation of c-src and subsequent destabilization of pVHL.


Assuntos
Glucocorticoides/farmacologia , Glucocorticoides/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Hipóxia Celular/fisiologia , Humanos , Hipóxia , Ligases/metabolismo , Fígado/metabolismo , Ligação Proteica , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Peixe-Zebra , Doença de von Hippel-Lindau/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 38(10): 2484-2497, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354220

RESUMO

Objective- EMILIN-1 (elastin microfibrils interface located protein-1) protein inhibits pro-TGF-ß (transforming growth factor-ß) proteolysis and limits TGF-ß bioavailability in vascular extracellular matrix. Emilin1-/- null mice display increased vascular TGF-ß signaling and are hypertensive. Because EMILIN-1 is expressed in vessels from embryonic life to adulthood, we aimed at unravelling whether the hypertensive phenotype of Emilin1-/- null mice results from a developmental defect or lack of homeostatic role in the adult. Approach and Results- By using a conditional gene targeting inactivating EMILIN-1 in smooth muscle cells of adult mice, we show that increased blood pressure in mice with selective smooth muscle cell ablation of EMILIN-1 depends on enhanced myogenic tone. Mechanistically, we unveil that higher TGF-ß signaling in smooth muscle cells stimulates HB-EGF (heparin-binding epidermal growth factor) expression and subsequent transactivation of EGFR (epidermal growth factor receptor). With increasing intraluminal pressure in resistance arteries, the cross talk established by TGF-ß and EGFR signals recruits TRPC6 (TRP [transient receptor potential] classical type 6) and TRPM4 (TRP melastatin type 4) channels, lastly stimulating voltage-dependent calcium channels and potentiating myogenic tone. We found reduced EMILIN-1 and enhanced myogenic tone, dependent on increased TGF-ß-EGFR signaling, in resistance arteries from hypertensive patients. Conclusions- Taken together, our findings implicate an unexpected role of the TGF-ß-EGFR pathway in hypertension with current translational perspectives.


Assuntos
Receptores ErbB/metabolismo , Hipertensão/metabolismo , Glicoproteínas de Membrana/metabolismo , Artérias Mesentéricas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Vasoconstrição , Animais , Pressão Sanguínea , Canais de Cálcio/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6 , Canais de Cátion TRPM/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Vasoconstrição/efeitos dos fármacos
11.
Dev Biol ; 396(1): 81-93, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25286120

RESUMO

TGF-beta (TGFß) family mediated Smad signaling is involved in mesoderm and endoderm specifications, left-right asymmetry formation and neural tube development. The TGFß1/2/3 and Activin/Nodal signal transduction cascades culminate with activation of SMAD2 and/or SMAD3 transcription factors and their overactivation are involved in different pathologies with an inflammatory and/or uncontrolled cell proliferation basis, such as cancer and fibrosis. We have developed a transgenic zebrafish reporter line responsive to Smad3 activity. Through chemical, genetic and molecular approaches we have seen that this transgenic line consistently reproduces in vivo Smad3-mediated TGFß signaling. Reporter fluorescence is activated in phospho-Smad3 positive cells and is responsive to both Smad3 isoforms, Smad3a and 3b. Moreover, Alk4 and Alk5 inhibitors strongly repress the reporter activity. In the CNS, Smad3 reporter activity is particularly high in the subpallium, tegumentum, cerebellar plate, medulla oblongata and the retina proliferative zone. In the spinal cord, the reporter is activated at the ventricular zone, where neuronal progenitor cells are located. Colocalization methods show in vivo that TGFß signaling is particularly active in neuroD+ precursors. Using neuronal transgenic lines, we observed that TGFß chemical inhibition leads to a decrease of differentiating cells and an increase of proliferation. Similarly, smad3a and 3b knock-down alter neural differentiation showing that both paralogues play a positive role in neural differentiation. EdU proliferation assay and pH3 staining confirmed that Smad3 is mainly active in post-mitotic, non-proliferating cells. In summary, we demonstrate that the Smad3 reporter line allows us to follow in vivo Smad3 transcriptional activity and that Smad3, by controlling neural differentiation, promotes the progenitor to precursor switch allowing neural progenitors to exit cell cycle and differentiate.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteína Smad3/genética , Medula Espinal/embriologia , Fator de Crescimento Transformador beta/metabolismo , Transgenes , Proteínas de Peixe-Zebra/genética , Receptores de Ativinas Tipo I/metabolismo , Animais , Animais Geneticamente Modificados , Ciclo Celular , Proliferação de Células , Genes Reporter , Imuno-Histoquímica , Neurônios/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Medula Espinal/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
12.
Cell Death Dis ; 15(4): 281, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643274

RESUMO

The human mitochondrial DNA polymerase gamma is a holoenzyme, involved in mitochondrial DNA (mtDNA) replication and maintenance, composed of a catalytic subunit (POLG) and a dimeric accessory subunit (POLG2) conferring processivity. Mutations in POLG or POLG2 cause POLG-related diseases in humans, leading to a subset of Mendelian-inherited mitochondrial disorders characterized by mtDNA depletion (MDD) or accumulation of multiple deletions, presenting multi-organ defects and often leading to premature death at a young age. Considering the paucity of POLG2 models, we have generated a stable zebrafish polg2 mutant line (polg2ia304) by CRISPR/Cas9 technology, carrying a 10-nucleotide deletion with frameshift mutation and premature stop codon. Zebrafish polg2 homozygous mutants present slower development and decreased viability compared to wild type siblings, dying before the juvenile stage. Mutants display a set of POLG-related phenotypes comparable to the symptoms of human patients affected by POLG-related diseases, including remarkable MDD, altered mitochondrial network and dynamics, and reduced mitochondrial respiration. Histological analyses detected morphological alterations in high-energy demanding tissues, along with a significant disorganization of skeletal muscle fibres. Consistent with the last finding, locomotor assays highlighted a decreased larval motility. Of note, treatment with the Clofilium tosylate drug, previously shown to be effective in POLG models, could partially rescue MDD in Polg2 mutant animals. Altogether, our results point at zebrafish as an effective model to study the etiopathology of human POLG-related disorders linked to POLG2, and a suitable platform to screen the efficacy of POLG-directed drugs in POLG2-associated forms.


Assuntos
DNA Polimerase Dirigida por DNA , Doenças Mitocondriais , Animais , Humanos , DNA Polimerase Dirigida por DNA/genética , Peixe-Zebra/genética , DNA Polimerase gama/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação/genética , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética
13.
Mol Genet Genomics ; 288(5-6): 231-42, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23674148

RESUMO

In the last years, we have seen the emergence of different tools that have changed the face of biology from a simple modeling level to a more systematic science. The transparent zebrafish embryo is one of the living models in which, after germline transformation with reporter protein-coding genes, specific fluorescent cell populations can be followed at single-cell resolution. The genetically modified embryos, larvae and adults, resulting from the transformation, are individuals in which time lapse analysis, digital imaging quantification, FACS sorting and next-generation sequencing can be performed in specific times and tissues. These multifaceted genetic and cellular approaches have permitted to dissect molecular interactions at the subcellular, intercellular, tissue and whole-animal level, thus allowing integration of cellular and developmental genetics with molecular imaging in the resulting frame of modern biology. In this review, we describe a new step in the zebrafish road to system biology, based on the use of transgenic biosensor animals expressing fluorescent proteins under the control of signaling pathway-responsive cis-elements. In particular, we provide here the rationale and details of this powerful tool, trying to focus on its huge potentialities in basic and applied research, while also discussing limits and potential technological evolutions of this approach.


Assuntos
Animais Geneticamente Modificados , Genes Reporter , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero , Regiões Promotoras Genéticas , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 32(9): 2178-84, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22814752

RESUMO

OBJECTIVE: Emilin-1 is a protein of elastic extracellular matrix involved in blood pressure (BP) control by negatively affecting transforming growth factor (TGF)-ß processing. Emilin1 null mice are hypertensive. This study investigates how Emilin-1 deals with vascular mechanisms regulating BP. METHODS AND RESULTS: This study uses a phenotype rescue approach in which Emilin-1 is expressed in either endothelial cells or vascular smooth muscle cells of transgenic animals with the Emilin1(-/-) background. We found that normalization of BP required Emilin-1 expression in smooth muscle cells, whereas expression of the protein in endothelial cells did not modify the hypertensive phenotype of Emilin1(-/-) mice. We also explored the effect of treatment with anti-TGF-ß antibodies on the hypertensive phenotype of Emilin1(-/-) mice, finding that neutralization of TGF-ß in Emilin1 null mice normalized BP quite rapidly (2 weeks). Finally, we evaluated the vasoconstriction response of resistance arteries to perfusion pressure and neurohumoral agents in different transgenic mouse lines. Interestingly, we found that the hypertensive phenotype was coupled with an increased arteriolar myogenic response to perfusion pressure, while the vasoconstriction induced by neurohumoral agents remained unaffected. We further elucidate that, as for the hypertensive phenotype, the increased myogenic response was attributable to increased TGF-ß activity. CONCLUSIONS: Our findings clarify that Emilin-1 produced by vascular smooth muscle cells acts as a main regulator of resting BP levels by controlling the myogenic response in resistance arteries through TGF-ß.


Assuntos
Pressão Sanguínea , Hipertensão/metabolismo , Glicoproteínas de Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Vasoconstrição , Animais , Anticorpos Neutralizantes/administração & dosagem , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Monitorização Ambulatorial da Pressão Arterial/métodos , Relação Dose-Resposta a Droga , Ecocardiografia Doppler , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Genótipo , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Telemetria , Fatores de Tempo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/genética , Vasoconstritores/farmacologia
15.
Cells ; 12(3)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36766721

RESUMO

Mutations in presenilin 2 (PS2) have been causally linked to the development of inherited Alzheimer's disease (AD). Besides its role as part of the γ-secretase complex, mammalian PS2 is also involved, as an individual protein, in a growing number of cell processes, which result altered in AD. To gain more insight into PS2 (dys)functions, we have generated a presenilin2 (psen2) knockout zebrafish line. We found that the absence of the protein does not markedly influence Notch signaling at early developmental stages, suggesting a Psen2 dispensable role in the γ-secretase-mediated Notch processing. Instead, loss of Psen2 induces an exaggerated locomotor response to stimulation in fish larvae, a reduced number of ER-mitochondria contacts in zebrafish neurons, and an increased basal autophagy. Moreover, the protein is involved in mitochondrial axonal transport, since its acute downregulation reduces in vivo organelle flux in zebrafish sensory neurons. Importantly, the expression of a human AD-linked mutant of the protein increases this vital process. Overall, our results confirm zebrafish as a good model organism for investigating PS2 functions in vivo, representing an alternative tool for the characterization of new AD-linked defective cell pathways and the testing of possible correcting drugs.


Assuntos
Doença de Alzheimer , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Mamíferos/metabolismo
16.
Cell Death Discov ; 9(1): 441, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057295

RESUMO

Arrhythmogenic cardiomyopathy (AC) is an inherited disorder characterized by progressive loss of the ventricular myocardium causing life-threatening ventricular arrhythmias, syncope and sudden cardiac death in young and athletes. About 40% of AC cases carry one or more mutations in genes encoding for desmosomal proteins, including Desmoplakin (Dsp). We present here the first stable Dsp knock-out (KO) zebrafish line able to model cardiac alterations and cell signalling dysregulation, characteristic of the AC disease, on which environmental factors and candidate drugs can be tested. Our stable Dsp knock-out (KO) zebrafish line was characterized by cardiac alterations, oedema and bradycardia at larval stages. Histological analysis of mutated adult hearts showed reduced contractile structures and abnormal shape of the ventricle, with thinning of the myocardial layer, vessels dilation and presence of adipocytes within the myocardium. Moreover, TEM analysis revealed "pale", disorganized and delocalized desmosomes. Intensive physical training protocol caused a global worsening of the cardiac phenotype, accelerating the progression of the disease. Of note, we detected a decrease of Wnt/ß-catenin signalling, recently associated with AC pathogenesis, as well as Hippo/YAP-TAZ and TGF-ß pathway dysregulation. Pharmacological treatment of mutated larvae with SB216763, a Wnt/ß-catenin agonist, rescued pathway expression and cardiac abnormalities, stabilizing the heart rhythm. Overall, our Dsp KO zebrafish line recapitulates many AC features observed in human patients, pointing at zebrafish as a suitable system for in vivo analysis of environmental modulators, such as the physical exercise, and the screening of pathway-targeted drugs, especially related to the Wnt/ß-catenin signalling cascade.

17.
Biomed J ; 45(2): 377-386, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35562284

RESUMO

BACKGROUND: Dysregulation of the autophagic flux is linked to a wide array of human diseases, and recent findings highlighted the central role of autophagy in reproduction, as well as an association between impairment of autophagy and behavioural disorders. Here we deepened on the possible multilevel link between impairment of the autophagic processes and reproduction at both the physiological and the behavioural level in a zebrafish mutant model. METHODS: Using a KO epg5 zebrafish line we analysed male breeding success, fertility rate, offspring survival, ejaculate quality, sperm and testes morphology, and courtship behaviour. To this aim physiological, histological, ultrastructural and behavioural analyses on epg5+/+ and mutant epg5-/- males coupled to WT females were applied. RESULTS: We observed an impairment of male reproductive performance in mutant epg5-/- males that showed a lower breeding success with a reduced mean number of eggs spawned by their WT female partners. The spermatogenesis and the ability to produce fertilising ejaculates were not drastically impaired in our mutant males, whereas we observed a reduction of their courtship behaviour that might contribute to explain their lower overall reproductive success. CONCLUSION: Collectively our findings corroborate the hypothesis of a multilevel link between the autophagic process and reproduction. Moreover, by giving a first glimpse on behavioural disorders associated to epg5 KO in model zebrafish, our results open the way to more extensive behavioural analyses, also beyond the reproductive events, that might serve as new tools for the molecular screening of autophagy-related multisystemic and neurodegenerative diseases.


Assuntos
Corte , Peixe-Zebra , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Reprodução/genética , Espermatozoides , Proteínas de Transporte Vesicular , Proteínas de Peixe-Zebra
18.
Nat Metab ; 4(1): 123-140, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102339

RESUMO

Vascular mural cells (vMCs) play an essential role in the development and maturation of the vasculature by promoting vessel stabilization through their interactions with endothelial cells. Whether endothelial metabolism influences mural cell recruitment and differentiation is unknown. Here, we show that the oxidative pentose phosphate pathway (oxPPP) in endothelial cells is required for establishing vMC coverage of the dorsal aorta during early vertebrate development in zebrafish and mice. We demonstrate that laminar shear stress and blood flow maintain oxPPP activity, which in turn, promotes elastin expression in blood vessels through production of ribose-5-phosphate. Elastin is both necessary and sufficient to drive vMC recruitment and maintenance when the oxPPP is active. In summary, our work demonstrates that endothelial cell metabolism regulates blood vessel maturation by controlling vascular matrix composition and vMC recruitment.


Assuntos
Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Matriz Extracelular/metabolismo , Fosforilação Oxidativa , Via de Pentose Fosfato , Animais , Biomarcadores , Elastina/biossíntese , Elastina/genética , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Expressão Gênica , Genes Reporter , Glucose/metabolismo , Hemodinâmica , Camundongos , Camundongos Knockout , Modelos Biológicos , Estresse Oxidativo , Pentosefosfatos/metabolismo , Peixe-Zebra
19.
Matrix Biol ; 112: 39-61, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35961424

RESUMO

Collagen VI (COL6) is an extracellular matrix protein exerting multiple functions in different tissues. In humans, mutations of COL6 genes cause rare inherited congenital disorders, primarily affecting skeletal muscles and collectively known as COL6-related myopathies, for which no cure is available yet. In order to get insights into the pathogenic mechanisms underlying COL6-related diseases, diverse animal models were produced. However, the roles exerted by COL6 during embryogenesis remain largely unknown. Here, we generated the first zebrafish COL6 knockout line through CRISPR/Cas9 site-specific mutagenesis of the col6a1 gene. Phenotypic characterization during embryonic and larval development revealed that lack of COL6 leads to neuromuscular defects and motor dysfunctions, together with distinctive alterations in the three-dimensional architecture of craniofacial cartilages. These phenotypic features were maintained in adult col6a1 null fish, which displayed defective muscle organization and impaired swimming capabilities. Moreover, col6a1 null fish showed autophagy defects and organelle abnormalities at both embryonic and adult stages, thus recapitulating the main features of patients affected by COL6-related myopathies. Mechanistically, lack of COL6 led to increased BMP signaling, and direct inhibition of BMP activity ameliorated the locomotor activity of col6a1 null embryos. Finally, treatment with salbutamol, a  ß2-adrenergic receptor agonist, elicited a significant amelioration of the neuromuscular and motility defects of col6a1 null fish embryos. Altogether, these findings indicate that this newly generated zebrafish col6a1 null line is a valuable in vivo tool to model COL6-related myopathies and suitable for drug screenings aimed at addressing the quest for effective therapeutic strategies for these disorders.


Assuntos
Colágeno Tipo VI , Doenças Musculares , Agonistas Adrenérgicos , Adulto , Albuterol , Animais , Colágeno Tipo VI/genética , Humanos , Doenças Musculares/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
20.
Cell Death Dis ; 13(12): 1069, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564370

RESUMO

Colon cancer is one of the leading causes of death worldwide. In recent years, cannabinoids have been extensively studied for their potential anticancer effects and symptom management. Several in vitro studies reported anandamide's (AEA) ability to block cancer cell proliferation and migration, but evidence from in vivo studies is still lacking. Thus, in this study, the effects of AEA exposure in zebrafish embryos transplanted with HCT116 cells were evaluated. Totally, 48 hpf xenografts were exposed to 10 nM AEA, 10 nM AM251, one of the cannabinoid 1 receptor (CB1) antagonist/inverse agonists, and to AEA + AM251, to verify the specific effect of AEA treatment. AEA efficacy was evaluated by confocal microscopy, which demonstrated that these xenografts presented a smaller tumor size, reduced tumor angiogenesis, and lacked micrometastasis formation. To gain deeper evidence into AEA action, microscopic observations were completed by molecular analyses. RNA seq performed on zebrafish transcriptome reported the downregulation of genes involved in cell proliferation, angiogenesis, and the immune system. Conversely, HCT116 cell transcripts resulted not affected by AEA treatment. In vitro HCT116 culture, in fact, confirmed that AEA exposure did not affect cell proliferation and viability, thus suggesting that the reduced tumor size mainly depends on direct effects on the fish rather than on the transplanted cancer cells. AEA reduced cell proliferation and tumor angiogenesis, as suggested by socs3 and pcnp mRNAs and Vegfc protein levels, and exerted anti-inflammatory activity, as indicated by the reduction of il-11a, mhc1uba, and csf3b mRNA. Of note, are the results obtained in groups exposed to AM251, which presence nullifies AEA's beneficial effects. In conclusion, this study promotes the efficacy of AEA in personalized cancer therapy, as suggested by its ability to drive tumor growth and metastasis, and strongly supports the use of zebrafish xenograft as an emerging model platform for cancer studies.


Assuntos
Neoplasias Colorretais , Peixe-Zebra , Animais , Humanos , Xenoenxertos , Agonismo Inverso de Drogas , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/uso terapêutico , Modelos Animais de Doenças , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Receptor CB1 de Canabinoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA