Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Commun Math Phys ; 384(3): 1709-1750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776522

RESUMO

Recent understanding of the thermodynamics of small-scale systems have enabled the characterization of the thermodynamic requirements of implementing quantum processes for fixed input states. Here, we extend these results to construct optimal universal implementations of a given process, that is, implementations that are accurate for any possible input state even after many independent and identically distributed (i.i.d.) repetitions of the process. We find that the optimal work cost rate of such an implementation is given by the thermodynamic capacity of the process, which is a single-letter and additive quantity defined as the maximal difference in relative entropy to the thermal state between the input and the output of the channel. Beyond being a thermodynamic analogue of the reverse Shannon theorem for quantum channels, our results introduce a new notion of quantum typicality and present a thermodynamic application of convex-split methods.

2.
Phys Rev Lett ; 122(20): 200601, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172741

RESUMO

Thermodynamics imposes restrictions on what state transformations are possible. In the macroscopic limit of asymptotically many independent copies of a state-as for instance in the case of an ideal gas-the possible transformations become reversible and are fully characterized by the free energy. In this Letter, we present a thermodynamic resource theory for quantum processes that also becomes reversible in the macroscopic limit, a property that is especially rare for a resource theory of quantum channels. We identify a unique single-letter and additive quantity, the thermodynamic capacity, that characterizes the "thermodynamic value" of a quantum channel, in the sense that the work required to simulate many repetitions of a quantum process employing many repetitions of another quantum process becomes equal to the difference of the respective thermodynamic capacities. On a technical level, we provide asymptotically optimal constructions of universal implementations of quantum processes. A challenging aspect of this construction is the apparent necessity to coherently combine thermal engines that would run in different thermodynamic regimes depending on the input state. Our results have applications in quantum Shannon theory by providing a generalized notion of quantum typical subspaces and by giving an operational interpretation to the entropy difference of a channel.

3.
Phys Rev Lett ; 123(25): 250601, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31922799

RESUMO

The resource theory of thermal operations, an established model for small-scale thermodynamics, provides an extension of equilibrium thermodynamics to nonequilibrium situations. On a lattice of any dimension with any translation-invariant local Hamiltonian, we identify a large set of translation-invariant states that can be reversibly converted to and from the thermal state with thermal operations and a small amount of coherence. These are the spatially ergodic states, i.e., states that have sharp statistics for any translation-invariant observable, and mixtures of such states with the same thermodynamic potential. As an intermediate result, we show for a general state that if the gap between the min- and the max-relative entropies to the thermal state is small, then the state can be approximately reversibly converted to and from the thermal state with thermal operations and a small source of coherence. Our proof provides a quantum version of the Shannon-McMillan-Breiman theorem for the relative entropy and a quantum Stein's lemma for ergodic states and local Gibbs states. Our results provide a strong link between the abstract resource theory of thermodynamics and more realistic physical systems as we achieve a robust and operational characterization of the emergence of a thermodynamic potential in translation-invariant lattice systems.

4.
Phys Rev Lett ; 117(1): 010404, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419548

RESUMO

Precise characterization of quantum devices is usually achieved with quantum tomography. However, most methods which are currently widely used in experiments, such as maximum likelihood estimation, lack a well-justified error analysis. Promising recent methods based on confidence regions are difficult to apply in practice or yield error bars which are unnecessarily large. Here, we propose a practical yet robust method for obtaining error bars. We do so by introducing a novel representation of the output of the tomography procedure, the quantum error bars. This representation is (i) concise, being given in terms of few parameters, (ii) intuitive, providing a fair idea of the "spread" of the error, and (iii) useful, containing the necessary information for constructing confidence regions. The statements resulting from our method are formulated in terms of a figure of merit, such as the fidelity to a reference state. We present an algorithm for computing this representation and provide ready-to-use software. Our procedure is applied to actual experimental data obtained from two superconducting qubits in an entangled state, demonstrating the applicability of our method.

5.
Phys Rev Lett ; 117(26): 260601, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28059535

RESUMO

Thermodynamic entropy, as defined by Clausius, characterizes macroscopic observations of a system based on phenomenological quantities such as temperature and heat. In contrast, information-theoretic entropy, introduced by Shannon, is a measure of uncertainty. In this Letter, we connect these two notions of entropy, using an axiomatic framework for thermodynamics [E. H. Lieb and J. Yngvason Proc. R. Soc. 469, 20130408 (2013)]. In particular, we obtain a direct relation between the Clausius entropy and the Shannon entropy, or its generalization to quantum systems, the von Neumann entropy. More generally, we find that entropy measures relevant in nonequilibrium thermodynamics correspond to entropies used in one-shot information theory.

6.
Nat Commun ; 7: 12051, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27384494

RESUMO

The grand canonical ensemble lies at the core of quantum and classical statistical mechanics. A small system thermalizes to this ensemble while exchanging heat and particles with a bath. A quantum system may exchange quantities represented by operators that fail to commute. Whether such a system thermalizes and what form the thermal state has are questions about truly quantum thermodynamics. Here we investigate this thermal state from three perspectives. First, we introduce an approximate microcanonical ensemble. If this ensemble characterizes the system-and-bath composite, tracing out the bath yields the system's thermal state. This state is expected to be the equilibrium point, we argue, of typical dynamics. Finally, we define a resource-theory model for thermodynamic exchanges of noncommuting observables. Complete passivity-the inability to extract work from equilibrium states-implies the thermal state's form, too. Our work opens new avenues into equilibrium in the presence of quantum noncommutation.

7.
Nat Commun ; 6: 7669, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26151678

RESUMO

Irreversible information processing cannot be carried out without some inevitable thermodynamical work cost. This fundamental restriction, known as Landauer's principle, is increasingly relevant today, as the energy dissipation of computing devices impedes the development of their performance. Here we determine the minimal work required to carry out any logical process, for instance a computation. It is given by the entropy of the discarded information conditional to the output of the computation. Our formula takes precisely into account the statistically fluctuating work requirement of the logical process. It enables the explicit calculation of practical scenarios, such as computational circuits or quantum measurements. On the conceptual level, our result gives a precise and operational connection between thermodynamic and information entropy, and explains the emergence of the entropy state function in macroscopic thermodynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA