Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33608459

RESUMO

Artificial mechanical perturbations affect chromatin in animal cells in culture. Whether this is also relevant to growing tissues in living organisms remains debated. In plants, aerial organ emergence occurs through localized outgrowth at the periphery of the shoot apical meristem, which also contains a stem cell niche. Interestingly, organ outgrowth has been proposed to generate compression in the saddle-shaped organ-meristem boundary domain. Yet whether such growth-induced mechanical stress affects chromatin in plant tissues is unknown. Here, by imaging the nuclear envelope in vivo over time and quantifying nucleus deformation, we demonstrate the presence of active nuclear compression in that domain. We developed a quantitative pipeline amenable to identifying a subset of very deformed nuclei deep in the boundary and in which nuclei become gradually narrower and more elongated as the cell contracts transversely. In this domain, we find that the number of chromocenters is reduced, as shown by chromatin staining and labeling, and that the expression of linker histone H1.3 is induced. As further evidence of the role of forces on chromatin changes, artificial compression with a MicroVice could induce the ectopic expression of H1.3 in the rest of the meristem. Furthermore, while the methylation status of chromatin was correlated with nucleus deformation at the meristem boundary, such correlation was lost in the h1.3 mutant. Altogether, we reveal that organogenesis in plants generates compression that is able to have global effects on chromatin in individual cells.


Assuntos
Cromatina/metabolismo , Meristema/citologia , Meristema/fisiologia , Arabidopsis/citologia , Arabidopsis/fisiologia , Cromatina/química , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Processamento de Imagem Assistida por Computador , Membrana Nuclear , Células Vegetais , Brotos de Planta/citologia , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
2.
New Phytol ; 238(3): 1085-1100, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779574

RESUMO

Chromatin is a dynamic platform within which gene expression is controlled by epigenetic modifications, notably targeting amino acid residues of histone H3. Among them is lysine 27 of H3 (H3K27), the trimethylation of which by the Polycomb Repressive Complex 2 (PRC2) is instrumental in regulating spatiotemporal patterns of key developmental genes. H3K27 is also subjected to acetylation and is found at sites of active transcription. Most information on the function of histone residues and their associated modifications in plants was obtained from studies of loss-of-function mutants for the complexes that modify them. To decrypt the genuine function of H3K27, we expressed a non-modifiable variant of H3 at residue K27 (H3.3K27A ) in Arabidopsis, and developed a multi-scale approach combining in-depth phenotypical and cytological analyses, with transcriptomics and metabolomics. We uncovered that the H3.3K27A variant causes severe developmental defects, part of them are reminiscent of PRC2 mutants, part of them are new. They include early flowering, increased callus formation and short stems with thicker xylem cell layer. This latest phenotype correlates with mis-regulation of phenylpropanoid biosynthesis. Overall, our results reveal novel roles of H3K27 in plant cell fates and metabolic pathways, and highlight an epigenetic control point for elongation and lignin composition of the stem.


Assuntos
Arabidopsis , Histonas , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Lisina/metabolismo , Lignina/metabolismo , Metilação , Epigênese Genética , Genes Controladores do Desenvolvimento
3.
Development ; 146(20)2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31540913

RESUMO

Although accumulating evidence suggests that gene regulation is highly stochastic, genetic screens have successfully uncovered master developmental regulators, questioning the relationship between transcriptional noise and intrinsic robustness of development. To identify developmental modules that are more or less resilient to large-scale genetic perturbations, we used the Arabidopsis polymerase II-associated factor 1 complex (Paf1c) mutant vip3, which is impaired in several RNA polymerase II-dependent transcriptional processes. We found that the control of flower termination was not as robust as classically pictured. In angiosperms, the floral female organs, called carpels, display determinate growth: their development requires the arrest of stem cell maintenance. In vip3 mutant flowers, carpels displayed a highly variable morphology, with different degrees of indeterminacy defects up to wild-type size inflorescence emerging from carpels. This phenotype was associated with variable expression of two key regulators of flower termination and stem cell maintenance in flowers, WUSCHEL and AGAMOUS The phenotype was also dependent on growth conditions. Together, these results highlight the surprisingly plastic nature of stem cell maintenance in plants and its dependence on Paf1c.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Meristema/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/citologia , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Hibridização In Situ , Microscopia Confocal
4.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419220

RESUMO

An ongoing challenge in functional epigenomics is to develop tools for precise manipulation of epigenetic marks. These tools would allow moving from correlation-based to causal-based findings, a necessary step to reach conclusions on mechanistic principles. In this review, we describe and discuss the advantages and limits of tools and technologies developed to impact epigenetic marks, and which could be employed to study their direct effect on nuclear and chromatin structure, on transcription, and their further genuine role in plant cell fate and development. On one hand, epigenome-wide approaches include drug inhibitors for chromatin modifiers or readers, nanobodies against histone marks or lines expressing modified histones or mutant chromatin effectors. On the other hand, locus-specific approaches consist in targeting precise regions on the chromatin, with engineered proteins able to modify epigenetic marks. Early systems use effectors in fusion with protein domains that recognize a specific DNA sequence (Zinc Finger or TALEs), while the more recent dCas9 approach operates through RNA-DNA interaction, thereby providing more flexibility and modularity for tool designs. Current developments of "second generation", chimeric dCas9 systems, aiming at better targeting efficiency and modifier capacity have recently been tested in plants and provided promising results. Finally, recent proof-of-concept studies forecast even finer tools, such as inducible/switchable systems, that will allow temporal analyses of the molecular events that follow a change in a specific chromatin mark.


Assuntos
Biotecnologia/métodos , Cromatina/genética , Epigênese Genética , Epigenômica/métodos , Edição de Genes/métodos , Plantas/genética , Animais , Cromatina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Humanos
5.
Development ; 144(23): 4428-4436, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982682

RESUMO

In plants, aerial organs are initiated at stereotyped intervals, both spatially (every 137° in a pattern called phyllotaxis) and temporally (at prescribed time intervals called plastochrons). To investigate the molecular basis of such regularity, mutants with altered architecture have been isolated. However, most of them only exhibit plastochron defects and/or produce a new, albeit equally reproducible, phyllotactic pattern. This leaves open the question of a molecular control of phyllotaxis regularity. Here, we show that phyllotaxis regularity depends on the function of VIP proteins, components of the RNA polymerase II-associated factor 1 complex (Paf1c). Divergence angles between successive organs along the stem exhibited increased variance in vip3-1 and vip3-2 compared with the wild type, in two different growth conditions. Similar results were obtained with the weak vip3-6 allele and in vip6, a mutant for another Paf1c subunit. Mathematical analysis confirmed that these defects could not be explained solely by plastochron defects. Instead, increased variance in phyllotaxis in vip3 was observed at the meristem and related to defects in spatial patterns of auxin activity. Thus, the regularity of spatial, auxin-dependent, patterning at the meristem requires Paf1c.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cotilédone/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Meristema/crescimento & desenvolvimento , Mutação , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
6.
J Exp Bot ; 68(3): 499-511, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28204553

RESUMO

Thigmomorphogenesis is a stereotypical developmental alteration in the plant body plan that can be induced by repeatedly touching plant organs. To unravel how plants sense and record multiple touch stimuli we performed a novel forward genetic screen based on the development of a shorter stem in response to repetitive touch. The touch insensitive (ths1) mutant identified in this screen is defective in some aspects of shoot and root thigmomorphogenesis. The ths1 mutant is an intermediate loss-of-function allele of VERNALIZATION INDEPENDENCE 3 (VIP3), a previously characterized gene whose product is part of the RNA polymerase II-associated factor 1 (Paf1) complex. The Paf1 complex is found in yeast, plants and animals, and has been implicated in histone modification and RNA processing. Several components of the Paf1 complex are required for reduced stem height in response to touch and normal root slanting and coiling responses. Global levels of histone H3K36 trimethylation are reduced in VIP3 mutants. In addition, THS1/VIP3 is required for wild type histone H3K36 trimethylation at the TOUCH3 (TCH3) and TOUCH4 (TCH4) loci and for rapid touch-induced upregulation of TCH3 and TCH4 transcripts. Thus, an evolutionarily conserved chromatin-modifying complex is required for both short- and long-term responses to mechanical stimulation, providing insight into how plants record mechanical signals for thigmomorphogenesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , RNA Polimerases Dirigidas por DNA/genética , Folhas de Planta/fisiologia , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Mutação
7.
Nucleic Acids Res ; 43(7): 3701-11, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25779047

RESUMO

Selective pressure to maintain small genome size implies control of transposable elements, and most old classes of retrotransposons are indeed absent from the very compact genome of the tunicate Oikopleura dioica. Nonetheless, two families of retrotransposons are present, including the Tor elements. The gene organization within Tor elements is similar to that of LTR retrotransposons and retroviruses. In addition to gag and pol, many Tor elements carry a third gene encoding viral envelope-like proteins (Env) that may mediate infection. We show that the Tor family contains distinct classes of elements. In some classes, env mRNA is transcribed from the 5'LTR as in retroviruses. In others, env is transcribed from an additional promoter located downstream of the 5'LTR. Tor Env proteins are membrane-associated glycoproteins which exhibit some features of viral membrane fusion proteins. Whereas some elements are expressed in the adult testis, many others are specifically expressed in embryonic somatic cells adjacent to primordial germ cells. Such embryonic expression depends on determinants present in the Tor elements and not on their surrounding genomic environment. Our study shows that unusual modes of transcription and expression close to the germline may contribute to the proliferation of Tor elements.


Assuntos
Retrovirus Endógenos/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas , RNA/genética , Urocordados/genética , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Dados de Sequência Molecular , Polimorfismo Genético , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos , Proteínas do Envelope Viral/química
8.
Plant Physiol ; 168(4): 1298-308, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25918117

RESUMO

To investigate the role of chromatin regulators in patterning gene expression, we employed a unique epigenetically controlled and highly tissue-specific green fluorescent protein reporter line in Arabidopsis (Arabidopsis thaliana). Using a combination of forward and reverse genetic approaches on this line, we show here that distinct epigenetic regulators are involved in silencing the transgene in different tissues. The forward genetic screen led to the identification of a novel HISTONE DEACETYLASE6 (HDA6) mutant allele (epigenetic control1, hda6-8). This allele differs from the previously reported alleles, as it did not affect DNA methylation and only had a very modest effect on the release of transposable elements and other heterochromatic transcripts. Overall, our data shows that HDA6 has at least two clearly separable activities in different genomic regions. In addition, we present an unexpected role for HDA6 in the control of DNA methylation at CG dinucleotides.


Assuntos
Arabidopsis/enzimologia , Cromatina/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Acetilação , Alelos , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilação de DNA , Elementos de DNA Transponíveis/genética , Eucromatina/genética , Expressão Gênica , Inativação Gênica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Especificidade de Órgãos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Alinhamento de Sequência , Transgenes
9.
J Fluoresc ; 21(2): 775-84, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21128105

RESUMO

In present paper series of trimethine cyanines modified in 5,5'- or 6,6'- position with hydroxy- or methoxy- substituents is studied for their ability to interact selectively with fibrillar formations. Processes of dye aggregation that accompany this interaction were also investigated. Meso-methyl trimethynecyanines with 5,5'- methoxy (7519) and hydroxy (7515) substituents strongly (up to 40 times) increase fluorescence intensity in the presence of fibrillar insulin, and also give noticeable fluorescent response on the presence of various aggregated proteins (lysozyme, ß-lactoglobulin, α-synuclein A53T). 7519 and 7515 dyes can be used for fluorometric detection of fibrillar insulin at concentrations of approximately 1.5-120 microg/ml. For meso-ethyl substituted dye 7514 the ability to form H- and J-aggregates upon interaction with insulin fibrils was suggested. The model of the H- and J-aggregate packing in the protein fibrillar structure has been proposed.


Assuntos
Amiloide/química , Carbocianinas/química , Corantes Fluorescentes/química , Multimerização Proteica , Animais , Bovinos , Humanos , Insulina/química , Modelos Lineares , Estrutura Secundária de Proteína , Espectrometria de Fluorescência
10.
Biophys Rev ; 9(4): 389-403, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28801801

RESUMO

In animals, it is now well established that forces applied at the cell surface are propagated through the cytoskeleton to the nucleus, leading to deformations of the nuclear structure and, potentially, to modification of gene expression. Consistently, altered nuclear mechanics has been related to many genetic disorders, such as muscular dystrophy, cardiomyopathy and progeria. In plants, the integration of mechanical signals in cell and developmental biology has also made great progress. Yet, while the link between cell wall stresses and cytoskeleton is consolidated, such cortical mechanical cues have not been integrated with the nucleoskeleton. Here, we propose to take inspiration from studies on animal nuclei to identify relevant methods amenable to probing nucleus mechanics and deformation in plant cells, with a focus on microrheology. To identify potential molecular targets, we also compare the players at the nuclear envelope, namely lamina and LINC complex, in both plant and animal nuclei. Understanding how mechanical signals are transduced to the nucleus across kingdoms will likely have essential implications in development (e.g. how mechanical cues add robustness to gene expression patterns), in the nucleoskeleton-cytoskeleton nexus (e.g. how stress is propagated in turgid/walled cells), as well as in transcriptional control, chromatin biology and epigenetics.

11.
Plant Signal Behav ; 11(3): e1127497, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26653277

RESUMO

The shoot apical meristem is the central organizer of plant aerial organogenesis. The molecular bases of its functions involve several cross-talks between transcription factors, hormones and microRNAs. We recently showed that the expression of the homeobox transcription factor STM is induced by mechanical perturbations, adding another layer of complexity to this regulation. Here we provide additional evidence that mechanical perturbations impact the promoter activity of CUC3, an important regulator of boundary formation at the shoot meristem. Interestingly, we did not detect such an effect for CUC1. This suggests that the robustness of expression patterns and developmental programs is controlled via a combined action of molecular factors as well as mechanical cues in the shoot apical meristem.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , MicroRNAs/metabolismo , Família Multigênica , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA