RESUMO
Biallelic germ line excision repair cross-complementing 6 like 2 (ERCC6L2) variants strongly predispose to bone marrow failure (BMF) and myeloid malignancies, characterized by somatic TP53-mutated clones and erythroid predominance. We present a series of 52 subjects (35 families) with ERCC6L2 biallelic germ line variants collected retrospectively from 11 centers globally, with a follow-up of 1165 person-years. At initial investigations, 32 individuals were diagnosed with BMF and 15 with a hematological malignancy (HM). The subjects presented with 19 different variants of ERCC6L2, and we identified a founder mutation, c.1424delT, in Finnish patients. The median age of the subjects at baseline was 18 years (range, 2-65 years). Changes in the complete blood count were mild despite severe bone marrow (BM) hypoplasia and somatic TP53 mutations, with no significant difference between subjects with or without HMs. Signs of progressive disease included increasing TP53 variant allele frequency, dysplasia in megakaryocytes and/or erythroid lineage, and erythroid predominance in the BM morphology. The median age at the onset of HM was 37.0 years (95% CI, 31.5-42.5; range, 12-65 years). The overall survival (OS) at 3 years was 95% (95% CI, 85-100) and 19% (95% CI, 0-39) for patients with BMF and HM, respectively. Patients with myelodysplastic syndrome or acute myeloid leukemia with mutated TP53 undergoing hematopoietic stem cell transplantation had a poor outcome with a 3-year OS of 28% (95% CI, 0-61). Our results demonstrated the importance of early recognition and active surveillance in patients with biallelic germ line ERCC6L2 variants.
Assuntos
Anemia Aplástica , Leucemia Mieloide Aguda , Pancitopenia , Humanos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Transtornos da Insuficiência da Medula Óssea , Leucemia Mieloide Aguda/genética , Anemia Aplástica/genética , Reparo do DNA , Doença Aguda , DNA Helicases/genéticaRESUMO
BACKGROUND: Neurodevelopmental disorders (NDDs) impact both the development and functioning of the brain and exhibit clinical and genetic variability. RAP and RAB proteins, belonging to the RAS superfamily, are identified as established contributors to NDDs. However, the involvement of SGSM (small G protein signalling modulator), another member of the RAS family, in NDDs has not been previously documented. METHODS: Proband-only or trio exome sequencing was performed on DNA samples obtained from affected individuals and available family members. The variant prioritisation process focused on identifying rare deleterious variants. International collaboration aided in the identification of additional affected individuals. RESULTS: We identified 13 patients from 8 families of Ashkenazi Jewish origin who all carried the same homozygous frameshift variant in SGSM3 gene. The variant was predicted to cause a loss of function, potentially leading to impaired protein structure or function. The variant co-segregated with the disease in all available family members. The affected individuals displayed mild global developmental delay and mild to moderate intellectual disability. Additional prevalent phenotypes observed included hypotonia, behavioural challenges and short stature. CONCLUSIONS: An Ashkenazi Jewish homozygous founder variant in SGSM3 was discovered in individuals with NDDs and short stature. This finding establishes a connection between another member of the RAS family and NDDs. Additional research is needed to uncover the specific molecular mechanisms by which SGSM3 influences neurodevelopmental processes and the regulation of growth.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Judeus/genética , Homozigoto , SíndromeRESUMO
Newborn screening (NBS) for isovaleric acidemia (IVA) reduces mortality and morbidity; however, it has also resulted in the detection of individuals with an asymptomatic or mild presentation for which early detection via newborn screening has not been proven to alter neurological outcome. We reevaluated biochemical and molecular data for newborns flagged positive for IVA in aim of developing a new screening algorithm to exclude the latter from positive screening. Among 2 794 365 newborns underwent routine newborn screening in Israel, 412 flagged positive for IVA, of which, 371 were false positives on recall sample testing and 41 positive newborns were referred to the clinic. 38/41 have biochemical and molecular confirmation in keeping with IVA. Among the 38 patients, 32% (12/38) were classified as symptomatic while, 68% (26/38) were classified as asymptomatic. 69% of the latter group harbor the known variant associated with mild potentially asymptomatic phenotype, c.932C>T; p. Ala311Val. Among asymptomatic patients, only 46% (12/26) are currently treated. Two novel variants have been detected in the IVD gene: c.487G>A; p. Ala163Thr and c.985A>G; p. Met329Val. Cut-off recalculation, of referred newborns' initial biochemical results, after classifying the referred patients to two binary groups of symptomatic and asymptomatic, resulted in an improved NBS algorithm comprising of C5 >5 µM and C5/C2>0.2 and C5/C3>4 flagging only those likely to have the classic symptomatic phenotype.
RESUMO
Peroxisomes are essential organelles involved in lipid metabolisms including plasmalogen biosynthesis and ß-oxidation of very long-chain fatty acids. Peroxisomes proliferate by the growth and division of pre-existing peroxisomes. The peroxisomal membrane is elongated by Pex11ß and then divided by the dynamin-like GTPase, DLP1 (also known as DRP1 encoded by DNM1L gene), which also functions as a fission factor for mitochondria. Nucleoside diphosphate kinase 3 (NME3) localized in both peroxisomes and mitochondria generates GTP for DLP1 activity. Deficiencies of either of these factors induce abnormal morphology of peroxisomes and/or mitochondria, and are associated with central nervous system dysfunction. To investigate whether the impaired division of peroxisomes affects lipid metabolisms, we assessed the phospholipid composition of cells lacking each of the different division factors. In fibroblasts from the patients deficient in DLP1, NME3, or Pex11ß, docosahexaenoic acid (DHA, C22:6)-containing phospholipids were found to be decreased. Conversely, the levels of several fatty acids such as arachidonic acid (AA, C20:4) and oleic acid (C18:1) were elevated. Mouse embryonic fibroblasts from Drp1- and Pex11ß-knockout mice also showed a decrease in the levels of phospholipids containing DHA and AA. Collectively, these results suggest that the dynamics of organelle morphology exert marked effects on the fatty acid composition of phospholipids.
Assuntos
Ácidos Docosa-Hexaenoicos , Peroxissomos , Animais , Camundongos , Ácidos Docosa-Hexaenoicos/metabolismo , Dinaminas/metabolismo , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Morfogênese , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Peroxissomos/metabolismo , Fosfolipídeos/metabolismoRESUMO
Galactosemia is an inborn disorder of carbohydrate metabolism of which early detection can prevent severe illness. Although the assay for galactose-1-phosphate uridyltransferase (GALT) enzyme activity has been available since the 1960s, many issues prevented it from becoming universal. In order to develop the Israeli newborn screening pilot algorithm for galactosemia, flow injection analysis tandem mass spectrometry measurement of galactose-1-phosphate in archived dried blood spots from newborns with classical galactosemia, galactosemia variants, epimerase deficiency, and normal controls, was conducted. Out of 431 330 newborns screened during the pilot study (30 months), two with classical galactosemia and four with epimerase deficiency were identified and confirmed. Five false positives and no false negatives were recorded. Following this pilot study, the Israeli final and routine newborn screening algorithm, as recommended by the Advisory Committee to the National Newborn Screening Program, now consists of galactose-1-phosphate measurement integrated into the routine tandem mass spectrometry panel as the first-tier screening test, and GALT enzyme activity as the second-tier performed to identify only newborns suspected to be at risk for classical galactosemia. The GALT enzyme activity cut-off used in the final algorithm was lowered in order to avoid false positives.
Assuntos
Galactosemias , Humanos , Recém-Nascido , Galactosemias/diagnóstico , Triagem Neonatal/métodos , Projetos Piloto , UTP-Hexose-1-Fosfato Uridililtransferase , Racemases e EpimerasesRESUMO
BACKGROUND: Epidermolysis bullosa (EB) features skin and mucosal fragility due to pathogenic variants in genes encoding components of the cutaneous basement membrane. Based on the level of separation within the dermal-epidermal junction, EB is sub-classified into four major types including EB simplex (EBS), junctional EB (JEB), dystrophic EB (DEB), and Kindler EB (KEB) with 16 EB-associated genes reported to date. METHODS: We ascertained a cohort of 151 EB patients of various Middle Eastern ethnic backgrounds. RESULTS: The cohort was comprised of EBS (64%, 97/151), DEB (21%, 31/151), JEB (12%, 18/151), and KEB (3%, 5/151). KRT14 and KRT5 variants were most common among EBS patients with 43% (42/97) and 46% (45/97) of EBS patients carrying mutations in either of these two genes, respectively. Truncal involvement was more common in KRT14-associated EBS as compared to EBS due to KRT5 mutations (p < .05). Mutations in COL17A1 and laminin 332-encoding genes were identified in 55% (10/18) and 45% (8/18) of JEB patients. Scarring alopecia, caries, and EB nevi were most common among JEB patients carrying COL17A1 mutations as compared to laminin 332-associated JEB (p < .05). Abnormal nails were evident in most DEB and JEB patients while poikiloderma was exclusively observed in KEB (p < .001). CONCLUSIONS: EB patients of Middle Eastern origin were found to feature specific phenotype-genotype correlations of relevance to the diagnosis and genetic counseling of patients in this region.
Assuntos
Epidermólise Bolhosa Distrófica , Epidermólise Bolhosa Simples , Epidermólise Bolhosa Juncional , Epidermólise Bolhosa , Humanos , Epidermólise Bolhosa/complicações , Epidermólise Bolhosa Juncional/complicações , Epidermólise Bolhosa Juncional/genética , Epidermólise Bolhosa Juncional/patologia , Epidermólise Bolhosa Distrófica/complicações , Pele/patologia , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/complicaçõesRESUMO
BACKGROUND: The endocytic reabsorption of proteins in the proximal tubule requires a complex machinery and defects can lead to tubular proteinuria. The precise mechanisms of endocytosis and processing of receptors and cargo are incompletely understood. EHD1 belongs to a family of proteins presumably involved in the scission of intracellular vesicles and in ciliogenesis. However, the relevance of EHD1 in human tissues, in particular in the kidney, was unknown. METHODS: Genetic techniques were used in patients with tubular proteinuria and deafness to identify the disease-causing gene. Diagnostic and functional studies were performed in patients and disease models to investigate the pathophysiology. RESULTS: We identified six individuals (5-33 years) with proteinuria and a high-frequency hearing deficit associated with the homozygous missense variant c.1192C>T (p.R398W) in EHD1. Proteinuria (0.7-2.1 g/d) consisted predominantly of low molecular weight proteins, reflecting impaired renal proximal tubular endocytosis of filtered proteins. Ehd1 knockout and Ehd1R398W/R398W knockin mice also showed a high-frequency hearing deficit and impaired receptor-mediated endocytosis in proximal tubules, and a zebrafish model showed impaired ability to reabsorb low molecular weight dextran. Interestingly, ciliogenesis appeared unaffected in patients and mouse models. In silico structural analysis predicted a destabilizing effect of the R398W variant and possible inference with nucleotide binding leading to impaired EHD1 oligomerization and membrane remodeling ability. CONCLUSIONS: A homozygous missense variant of EHD1 causes a previously unrecognized autosomal recessive disorder characterized by sensorineural deafness and tubular proteinuria. Recessive EHD1 variants should be considered in individuals with hearing impairment, especially if tubular proteinuria is noted.
Assuntos
Surdez , Peixe-Zebra , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Surdez/genética , Endocitose , Humanos , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Mutação , Proteinúria/metabolismo , Proteínas de Transporte Vesicular/genética , Adulto Jovem , Peixe-Zebra/metabolismoRESUMO
Using exome sequencing, we have identified de novo variants in MAPK8IP3 in 13 unrelated individuals presenting with an overlapping phenotype of mild to severe intellectual disability. The de novo variants comprise six missense variants, three of which are recurrent, and three truncating variants. Brain anomalies such as perisylvian polymicrogyria, cerebral or cerebellar atrophy, and hypoplasia of the corpus callosum were consistent among individuals harboring recurrent de novo missense variants. MAPK8IP3 has been shown to be involved in the retrograde axonal-transport machinery, but many of its specific functions are yet to be elucidated. Using the CRISPR-Cas9 system to target six conserved amino acid positions in Caenorhabditis elegans, we found that two of the six investigated human alterations led to a significantly elevated density of axonal lysosomes, and five variants were associated with adverse locomotion. Reverse-engineering normalized the observed adverse effects back to wild-type levels. Combining genetic, phenotypic, and functional findings, as well as the significant enrichment of de novo variants in MAPK8IP3 within our total cohort of 27,232 individuals who underwent exome sequencing, we implicate de novo variants in MAPK8IP3 as a cause of a neurodevelopmental disorder with intellectual disability and variable brain anomalies.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Encéfalo/anormalidades , Encéfalo/metabolismo , Deficiência Intelectual/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Animais , Encéfalo/diagnóstico por imagem , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Locomoção , Lisossomos/metabolismo , Masculino , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Sequenciamento do Exoma , Adulto JovemRESUMO
We report a patient who presented with congenital hypotonia, hypoventilation, and cerebellar histopathological alterations. Exome analysis revealed a homozygous mutation in the initiation codon of the NME3 gene, which encodes an NDP kinase. The initiation-codon mutation leads to deficiency in NME3 protein expression. NME3 is a mitochondrial outer-membrane protein capable of interacting with MFN1/2, and its depletion causes dysfunction in mitochondrial dynamics. Consistently, the patient's fibroblasts were characterized by a slow rate of mitochondrial dynamics, which was reversed by expression of wild-type or catalytic-dead NME3. Moreover, glucose starvation caused mitochondrial fragmentation and cell death in the patient's cells. The expression of wild-type and catalytic-dead but not oligomerization-attenuated NME3 restored mitochondrial elongation. However, only wild-type NME3 sustained ATP production and viability. Thus, the separate functions of NME3 in mitochondrial fusion and NDP kinase cooperate in metabolic adaptation for cell survival in response to glucose starvation. Given the critical role of mitochondrial dynamics and energy requirements in neuronal development, the homozygous mutation in NME3 is linked to a fatal mitochondrial neurodegenerative disorder.
Assuntos
Trifosfato de Adenosina , Metabolismo Energético/genética , Homozigoto , Dinâmica Mitocondrial/genética , Nucleosídeo NM23 Difosfato Quinases , Doenças Neurodegenerativas , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Sobrevivência Celular , Feminino , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/patologia , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologiaRESUMO
Urea cycle disorders (UCDs), including OTC deficiency (OTCD), are life-threatening diseases with a broad clinical spectrum. Early diagnosis and initiation of treatment based on a newborn screening (NBS) test for OTCD with high specificity and sensitivity may contribute to reduction of the significant complications and high mortality. The efficacy of incorporating orotic acid determination into routine NBS was evaluated. Combined measurement of orotic acid and citrulline in archived dried blood spots from newborns with urea cycle disorders and normal controls was used to develop an algorithm for routine NBS for OTCD in Israel. Clinical information and genetic confirmation results were obtained from the follow-up care providers. About 1147986 newborns underwent routine NBS including orotic acid determination, 25 of whom were ultimately diagnosed with a UCD. Of 11 newborns with OTCD, orotate was elevated in seven but normal in two males with early-onset and two males with late-onset disease. Orotate was also elevated in archived dried blood spots of all seven retrospectively tested historical OTCD patients, only three of whom had originally been identified by NBS with low citrulline and elevated glutamine. Among the other UCDs emerge, three CPS1D cases and additional three retrospective CPS1D cases otherwise reported as a very rare condition. Combined levels of orotic acid and citrulline in routine NBS can enhance the detection of UCD, especially increasing the screening sensitivity for OTCD and differentiate it from CPS1D. Our data and the negligible extra cost for orotic acid determination might contribute to the discussion on screening for proximal UCDs in routine NBS.
Assuntos
Citrulina/sangue , Doença da Deficiência de Ornitina Carbomoiltransferase/diagnóstico , Ácido Orótico/sangue , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico , Teste em Amostras de Sangue Seco , Feminino , Humanos , Recém-Nascido , Israel/epidemiologia , Masculino , Triagem Neonatal , Doença da Deficiência de Ornitina Carbomoiltransferase/epidemiologia , Estudos Retrospectivos , Distúrbios Congênitos do Ciclo da Ureia/epidemiologiaRESUMO
PURPOSE: To analyze the risk for clinically significant microarray aberrations in pregnancies with polyhydramnios. METHODS: Data from all chromosomal microarray analyses (CMA) performed due to polyhydramnios between January 2013 and December 2019 were retrospectively obtained from the Ministry of Health Database. The rate of clinically significant (pathogenic and likely pathogenic) CMA findings in isolated and non-isolated polyhydramnios cohorts was compared to a local control group of 5541 fetuses with normal ultrasound, in which 78 (1.4%) abnormal results were demonstrated. Subgroup analyses were performed by the degree of polyhydramnios, week of diagnosis, maternal age, and the presence of additional sonographic anomalies. RESULTS: In the isolated polyhydramnios cohort, 19/623 (3.1%) clinically significant CMA aberrations were noted, a significantly higher rate compared to the control population. However, the risk for abnormal CMA results in the 158 cases with mild polyhydramnios (AFI 25-29.9, or maximal vertical pocket 8-11.9 cm) did not significantly differ from pregnancies with normal ultrasound. Of 119 cases of non-isolated polyhydramnios (most frequently associated with cardiovascular (26.1%) and brain (15.1%) anomalies), 8 (6.7%) abnormal CMA findings were noted, mainly karyotype-detectable. CONCLUSION: Mild polyhydramnios was not associated with an increased rate of clinically significant microarray results, compared to pregnancies with normal ultrasound. An extensive anatomical sonographic survey should be performed in pregnancies with polyhydramnios, with consideration of fetal echocardiography.
Assuntos
Aberrações Cromossômicas , Poli-Hidrâmnios/diagnóstico por imagem , Diagnóstico Pré-Natal/métodos , Ultrassonografia Pré-Natal/métodos , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , Análise em Microsséries , Poli-Hidrâmnios/genética , Gravidez , Estudos RetrospectivosRESUMO
COG6-congenital disorder of glycosylation (COG6-CDG) is caused by biallelic mutations in COG6. To-date, 12 variants causing COG6-CDG in less than 20 patients have been reported. Using whole exome sequencing we identified two siblings with a novel homozygous deletion of 26 bp in COG6, creating a splicing variant (c.518_540 + 3del) and a shift in the reading frame. The phenotype of COG6-CDG includes growth and developmental retardation, microcephaly, liver and gastrointestinal disease, hypohydrosis and recurrent infections. We report two patients with novel phenotypic features including bowel malrotation and ambiguous genitalia, directing attention to the role of glycoprotein metabolism in the causation of disorders of sex development (DSD). Searching the glycomic literature, we identified 14 CDGs including males with DSD, a feature not previously accentuated. This study broadens the genetic and phenotypic spectrum of COG6-CDG and calls for increasing awareness to the central role of glycosylation processes in development of human sex and genitalia.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Defeitos Congênitos da Glicosilação/genética , Transtornos do Desenvolvimento Sexual/genética , Oxigenases de Função Mista/genética , Defeitos Congênitos da Glicosilação/mortalidade , Defeitos Congênitos da Glicosilação/fisiopatologia , Transtornos do Desenvolvimento Sexual/mortalidade , Transtornos do Desenvolvimento Sexual/fisiopatologia , Feminino , Glicosilação , Homozigoto , Humanos , Recém-Nascido , Masculino , Mutação/genética , Fenótipo , Deleção de Sequência/genética , Irmãos , Sequenciamento do ExomaRESUMO
BACKGROUND: The Arab population in Israel is a minority ethnic group with its own distinct cultural subgroups. Minority populations are known to underutilize genetic tests and counseling services, thereby undermining the effectiveness of these services among such populations. However, the general and culture-specific reasons for this underutilization are not well defined. Moreover, Arab populations and their key cultural-religious subsets (Muslims, Christians, and Druze) do not reside exclusively in Israel, but are rather found as a minority group in many European and North American countries. Therefore, focusing on the Arab population in Israel allows for the examination of attitudes regarding genetic testing and counseling among this globally important ethnic minority population. METHODS: We used a qualitative research method, employing individual interviews with 18 women of childbearing age from three religious subgroups (i.e., Druze, Muslim, and Christian) who reside in the Acre district, along with focus group discussions with healthcare providers (HCPs; 9 nurses and 7 genetic counselors) working in the same geographical district. RESULTS: A general lack of knowledge regarding the goals and practice of genetic counseling resulting in negative preconceptions of genetic testing was identified amongst all counselees. Counselors' objective of respecting patient autonomy in decision-making, together with counselees' misunderstanding of genetic risk data, caused uncertainty, frustration, and distrust. In addition, certain interesting variations were found between the different religious subgroups regarding their attitudes to genetic counseling. CONCLUSIONS: The study highlights the miscommunications between HCPs, particularly counselors from the majority ethno-cultural group, and counselees from a minority ethno-cultural group. The need for nuanced understanding of the complex perspectives of minority ethno-cultural groups is also emphasized. Such an understanding may enhance the effectiveness of genetic testing and counseling among the Arab minority group while also genuinely empowering the personal autonomy of counselees from this minority group in Israel and other countries.
Assuntos
Aconselhamento Genético , Grupos Minoritários , Árabes/genética , Aconselhamento , Feminino , Testes Genéticos , Humanos , Israel , América do Norte , Pesquisa QualitativaRESUMO
Peroxisomes proliferate by sequential processes comprising elongation, constriction, and scission of peroxisomal membrane. It is known that the constriction step is mediated by a GTPase named dynamin-like protein 1 (DLP1) upon efficient loading of GTP. However, mechanism of fuelling GTP to DLP1 remains unknown in mammals. We earlier show that nucleoside diphosphate (NDP) kinase-like protein, termed dynamin-based ring motive-force organizer 1 (DYNAMO1), generates GTP for DLP1 in a red alga, Cyanidioschyzon merolae. In the present study, we identified that nucleoside diphosphate kinase 3 (NME3), a mammalian homologue of DYNAMO1, localizes to peroxisomes. Elongated peroxisomes were observed in cells with suppressed expression of NME3 and fibroblasts from a patient lacking NME3 due to the homozygous mutation at the initiation codon of NME3. Peroxisomes proliferated by elevation of NME3 upon silencing the expression of ATPase family AAA domain containing 1, ATAD1. In the wild-type cells expressing catalytically-inactive NME3, peroxisomes were elongated. These results suggest that NME3 plays an important role in peroxisome division in a manner dependent on its NDP kinase activity. Moreover, the impairment of peroxisome division reduces the level of ether-linked glycerophospholipids, ethanolamine plasmalogens, implying the physiological importance of regulation of peroxisome morphology.
Assuntos
Dinaminas/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Peroxissomos/metabolismo , Frações Subcelulares/metabolismo , Sequência de Aminoácidos , Animais , Células HeLa , Homozigoto , Humanos , Rodófitas , Homologia de SequênciaRESUMO
STXBP1, also known as Munc-18, is a master regulator of neurotransmitter release and synaptic function in the human brain through its direct interaction with syntaxin 1A. STXBP1 binds syntaxin 1A is an inactive conformational state. STXBP1 decreases its binding affinity to syntaxin upon phosphorylation, enabling syntaxin 1A to engage in the SNARE complex, leading to neurotransmitter release. STXBP1-related disorders are well characterized by encephalopathy with epilepsy, and a diverse range of neurological and neurodevelopmental conditions. Through exome sequencing of a child with developmental delay, hypotonia, and spasticity, we found a novel de novo insertion mutation of three nucleotides in the STXBP1 coding region, resulting in an additional arginine after position 39 (R39dup). Inconclusive results from state-of-the-art variant prediction tools mandated a structure-based approach using molecular dynamics (MD) simulations of the STXBP1-syntaxin 1A complex. Comparison of the interaction interfaces of the wild-type and the R39dup complexes revealed a reduced interaction surface area in the mutant, leading to destabilization of the protein complex. Moreover, the decrease in affinity toward syntaxin 1A is similar for the phosphorylated STXBP1 and the R39dup. We applied the same MD methodology to seven additional previously reported STXBP1 mutations and reveal that the stability of the STXBP1-syntaxin 1A interface correlates with the reported clinical phenotypes. This study provides a direct link between the outcome of a novel variant in STXBP1 and protein structure and dynamics. The structural change upon mutation drives an alteration in synaptic function.
Assuntos
Deficiências do Desenvolvimento/genética , Proteínas Munc18/genética , Sintaxina 1/metabolismo , Encéfalo/metabolismo , Encefalopatias/genética , Pré-Escolar , Deficiências do Desenvolvimento/fisiopatologia , Eletroencefalografia/métodos , Epilepsia/genética , Feminino , Humanos , Proteínas Munc18/metabolismo , Mutagênese Insercional/genética , Sintaxina 1/genética , Sequenciamento do Exoma/métodosRESUMO
BACKGROUND: With the continuing decrease in cost of whole genome sequencing (WGS), we have already approached the point of inflection where WGS testing has become economically feasible, facilitating broader access to the benefits that are helping to define WGS as the new diagnostic standard. WGS provides unique opportunities for detection of structural variants; however, such analyses, despite being recognized by the research community, have not previously made their way into routine clinical practice. RESULTS: We have developed a clinically validated pipeline for highly specific and sensitive detection of structural variants basing on 30X PCR-free WGS. Using a combination of breakpoint analysis of split and discordant reads, and read depth analysis, the pipeline identifies structural variants down to single base pair resolution. False positives are minimized using calculations for loss of heterozygosity and bi-modal heterozygous variant allele frequencies to enhance heterozygous deletion and duplication detection respectively. Compound and potential compound combinations of structural variants and small sequence changes are automatically detected. To facilitate clinical interpretation, identified variants are annotated with phenotype information derived from HGMD Professional and population allele frequencies derived from public and Variantyx allele frequency databases. Single base pair resolution enables easy visual inspection of potentially causal variants using the IGV genome browser as well as easy biochemical validation via PCR. Analytical and clinical sensitivity and specificity of the pipeline has been validated using analysis of Genome in a Bottle reference genomes and known positive samples confirmed by orthogonal sequencing technologies. CONCLUSION: Consistent read depth of PCR-free WGS enables reliable detection of structural variants of any size. Annotation both on gene and variant level allows clinicians to match reported patient phenotype with detected variants and confidently report causative finding in all clinical cases used for validation.
Assuntos
Variação Genética , Sequenciamento Completo do Genoma/métodos , Frequência do Gene , Humanos , Anotação de Sequência Molecular , Fenótipo , Reprodutibilidade dos TestesRESUMO
OBJECTIVE: The aim of the study was to study the associations between localized provoked vulvodynia (LPV) and several single-nucleotide polymorphisms (SNPs) in the transient receptor potential vanilloid type 1 (TRPV1), nerve growth factor (NGF), and the heparanase (HPSE) genes. MATERIALS AND METHODS: Prevalence of SNPs among 65 women with moderate or severe primary LPV (initial symptoms occur with first provoking physical contact) and 126 healthy, ethnically matched controls was analyzed in an observational case-control study. Each participant answered a questionnaire addressing familial LPV occurrence and comorbid pain conditions. RESULTS: Familial occurrences of LPV, temporomandibular joint (TMJ) symptoms, recurrent vaginitis, and irritable bowel syndrome were significantly higher among LPV women than healthy controls. Genotyping analyses revealed a novel, statistically significant high prevalence of polymorphism c.945G>C (rs222747) of TRPV1 and a SNP in the promoter region of NGF (rs11102930) in LPV women compared with controls. A logistic regression model for rs222747 and rs11102930 frequent alleles indicates significant LPV association within the entire study group and Ashkenazi Jewish women, respectively. Comparison of pain conditions with frequent alleles showed the rs222747 "CC" genotype of TRPV1 associated with women with TMJ, recurrent vaginitis, and LPV. CONCLUSIONS: Our results suggest novel genetic susceptibility to primary LPV associated with specific alleles in genes TRPV1 and NGF and propose the rs222747 "C" allele of TRPV1 as a common genetic predisposition for other pain syndromes.
Assuntos
Predisposição Genética para Doença , Genótipo , Fator de Crescimento Neural/genética , Canais de Cátion TRPV/genética , Vulvodinia/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Glucuronidase/genética , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Inquéritos e Questionários , Adulto JovemRESUMO
Cerebrotendinous xanthomatosis (CTX) is a progressive metabolic leukodystrophy. Early identification and treatment from birth onward effectively provides a functional cure, but diagnosis is often delayed. We conducted a pilot study using a two-tier test for CTX to screen archived newborn dried bloodspots (DBSs) or samples collected prospectively from a high-risk Israeli newborn population. All DBS samples were analyzed with flow injection analysis (FIA)-MS/MS, and 5% of samples were analyzed with LC-MS/MS. Consecutively collected samples were analyzed to identify CTX-causing founder genetic variants common among Druze and Moroccan Jewish populations. First-tier analysis with FIA-MS/MS provided 100% sensitivity to detect CTX-positive newborn DBSs, with a low false-positive rate (0.1-0.5%). LC-MS/MS, as a second-tier test, provided 100% sensitivity to detect CTX-positive newborn DBSs with a false-positive rate of 0% (100% specificity). In addition, 5ß-cholestane-3α,7α,12α,25-tetrol-3-O-ß-D-glucuronide was identified as the predominant bile-alcohol disease marker present in CTX-positive newborn DBSs. In newborns identifying as Druze, a 1:30 carriership frequency was determined for the c.355delC CYP27A1 gene variant, providing an estimated disease prevalence of 1:3,600 in this population. These data support the feasibility of two-tier DBS screening for CTX in newborns and set the stage for large-scale prospective pilot studies.
Assuntos
Triagem Neonatal/métodos , Xantomatose Cerebrotendinosa/diagnóstico , Cromatografia Líquida , Humanos , Recém-Nascido , Estudos Prospectivos , Espectrometria de Massas em TandemRESUMO
Leukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay. Clinical, metabolic, and imaging characterization of seven patients followed by homozygosity mapping and linkage analysis were performed. Next generation sequencing, bioinformatics, and segregation analyses followed, to determine a loss of function sequence variation in the phospholipase A2-activating protein encoding gene (PLAA). Expression and functional studies of the encoded protein were performed and included measurement of prostaglandin E2 and cytosolic phospholipase A2 activity in membrane fractions of fibroblasts derived from patients and healthy controls. Plaa-null mice were generated and prostaglandin E2 levels were measured in different tissues. The novel phenotype of our patients segregated with a homozygous loss-of-function sequence variant, causing the substitution of leucine at position 752 to phenylalanine, in PLAA, which causes disruption of the protein's ability to induce prostaglandin E2 and cytosolic phospholipase A2 synthesis in patients' fibroblasts. Plaa-null mice were perinatal lethal with reduced brain levels of prostaglandin E2 The non-functional phospholipase A2-activating protein and the associated neurological phenotype, reported herein for the first time, join other complex phospholipid defects that cause leukoencephalopathies in humans, emphasizing the importance of this axis in white matter development and maintenance.