Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Kidney Int ; 102(6): 1305-1319, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35921911

RESUMO

Chronic allograft dysfunction with progressive fibrosis of unknown cause remains a major issue after kidney transplantation, characterized by ischemia-reperfusion injury (IRI). One hypothesis to account for this is that spontaneous progressive tubulointerstitial fibrosis following IRI is driven by cellular senescence evolving from a prolonged, unresolved DNA damage response (DDR). Since cellular communication network factor 2 ((CCN2), formerly called connective tissue growth factor), an established mediator of kidney fibrosis, is also involved in senescence-associated pathways, we investigated the relation between CCN2 and cellular senescence following kidney transplantation. Tubular CCN2 overexpression was found to be associated with DDR, loss of kidney function and tubulointerstitial fibrosis in both the early and the late phase in human kidney allograft biopsies. Consistently, CCN2 deficient mice developed reduced senescence and tubulointerstitial fibrosis in the late phase; six weeks after experimental IRI. Moreover, tubular DDR markers and plasma urea were less elevated in CCN2 knockout than in wild-type mice. Finally, CCN2 administration or overexpression in epithelial cells induced upregulation of tubular senescence-associated genes including p21, while silencing of CCN2 alleviated DDR induced by anoxia-reoxygenation injury in cultured proximal tubule epithelial cells. Thus, our observations indicate that inhibition of CCN2 can mitigate IRI-induced acute kidney injury, DNA damage, and the subsequent DDR-senescence-fibrosis sequence. Hence, targeting CCN2 might help to protect the kidney from transplantation-associated post-IRI chronic kidney dysfunction.


Assuntos
Injúria Renal Aguda , Fator de Crescimento do Tecido Conjuntivo , Dano ao DNA , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibrose , Rim/patologia , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/patologia
2.
FASEB J ; 32(5): 2644-2657, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29298862

RESUMO

Although yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), nuclear transducers of the Hippo pathway, are mostly silent in adult organs, aberrant activation of YAP/TAZ promotes tumorigenesis and abnormal tissue repair. The extent of involvement of TAZ in chronic kidney disease (CKD) is unknown. In our study, increased TAZ nuclear accumulation and expression in the tubulointerstitium was readily evident in 3 models of renal injury including obstructive, aristolochic acid (AA), and diabetic nephropathy, correlating with fibrosis progression. Stable TAZ overexpression in human kidney (HK)-2 epithelial cells promoted connective tissue growth factor (CTGF), fibronectin, vimentin, and p21 expression, epithelial dedifferentiation, and growth inhibition, in part, via Sma mothers against decapentaplegic homologue (SMAD)-3-dependent CTGF induction. CTGF secretion by TAZ-overexpressing epithelium also triggered proliferative defects in nonengineered HK-2 cells confirming a nonautonomous role of TAZ ( via a paracrine mechanism) in orchestrating kidney epithelial cell-cell communication. Renal tubular-specific induction of TGF-ß1 in mice and TGF-ß1 stimulation of HK-2 cells resulted in TAZ protein up-regulation. TAZ stable silencing in HK-2 cells abrogated TGF-ß1-induced expression of target genes without affecting SMAD3 phosphorylation, which is also crucial for fibrotic reprogramming. Thus, TAZ was activated in fibrosis through TGF-ß1-dependent mechanisms and sustained TAZ signaling promotes epithelial maladaptive repair. TAZ is also a novel non-SMAD downstream effector of renal TGF-ß1 signaling, establishing TAZ as a new antifibrosis target for treatment of CKD.-Anorga, S., Overstreet, J. M., Falke, L. L., Tang, J., Goldschmeding, R. G., Higgins, P. J., Samarakoon, R. Deregulation of Hippo-TAZ pathway during renal injury confers a fibrotic maladaptive phenotype.


Assuntos
Nefropatias Diabéticas/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Aciltransferases , Animais , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Feminino , Fibrose , Via de Sinalização Hippo , Humanos , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
3.
J Pathol ; 244(2): 227-241, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29160908

RESUMO

Connective tissue growth factor (CCN2/CTGF) is a matricellular protein that is overexpressed in progressive human renal diseases, mainly in fibrotic areas. In vitro studies have demonstrated that CCN2 regulates the production of extracellular matrix (ECM) proteins and epithelial-mesenchymal transition (EMT), and could therefore contribute to renal fibrosis. CCN2 blockade ameliorates experimental renal damage, including diminution of ECM accumulation. We have reported that CCN2 and its C-terminal degradation product CCN2(IV) bind to epidermal growth factor receptor (EGFR) to modulate renal inflammation. However, the receptor involved in CCN2 profibrotic actions has not been described so far. Using a murine model of systemic administration of CCN2(IV), we have unveiled a fibrotic response in the kidney that was diminished by EGFR blockade. Additionally, in conditional CCN2 knockout mice, renal fibrosis elicited by folic acid-induced renal damage was prevented, and this was linked to inhibition of EGFR pathway activation. Our in vitro studies demonstrated a direct effect of CCN2 via the EGFR pathway on ECM production by fibroblasts and the induction of EMT in tubular epithelial cells. Our studies clearly show that the EGFR regulates CCN2 fibrotic signalling in the kidney, and suggest that EGFR pathway blockade could be a potential therapeutic option to block CCN2-mediated profibrotic effects in renal diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Transição Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Nefropatias/enzimologia , Rim/enzimologia , Animais , Fator de Crescimento do Tecido Conjuntivo/deficiência , Fator de Crescimento do Tecido Conjuntivo/genética , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Fibroblastos/enzimologia , Fibroblastos/patologia , Fibrose , Ácido Fólico , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/prevenção & controle , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Células NIH 3T3 , Fragmentos de Peptídeos , Inibidores de Proteínas Quinases/farmacologia , Receptor trkA/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
4.
Kidney Int ; 92(4): 850-863, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28545716

RESUMO

Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor ß induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its possible involvement in lymphangiogenesis has not been explored. We found prominent lymphangiogenesis during tubulointerstitial fibrosis to be associated with increased expression of CTGF and VEGF-C in human obstructed nephropathy as well as in diabetic kidney disease. Using CTGF knockout mice, we investigated the involvement of CTGF in development of fibrosis and associated lymphangiogenesis in obstructive nephropathy. The increase of lymphatic vessels and VEGF-C in obstructed kidneys was significantly reduced in CTGF knockout compared to wild-type mice. Also in mouse kidneys subjected to ischemia-reperfusion injury, CTGF knockdown was associated with reduced lymphangiogenesis. In vitro, CTGF induced VEGF-C production in HK-2 cells, while CTGF siRNA suppressed transforming growth factor ß1-induced VEGF-C upregulation. Furthermore, surface plasmon resonance analysis showed that CTGF and VEGF-C directly interact. Interestingly, VEGF-C-induced capillary-like tube formation by human lymphatic endothelial cells was suppressed by full-length CTGF but not by naturally occurring proteolytic CTGF fragments. Thus, CTGF is significantly involved in fibrosis-associated renal lymphangiogenesis through regulation of, and direct interaction with, VEGF-C.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Nefropatias/patologia , Túbulos Renais/patologia , Linfangiogênese , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Modelos Animais de Doenças , Fibrose , Humanos , Nefropatias/etiologia , Nefropatias/cirurgia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Traumatismo por Reperfusão/complicações , Transdução de Sinais , Ressonância de Plasmônio de Superfície , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
5.
FASEB J ; 30(10): 3308-3320, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27328942

RESUMO

Protein phosphatase magnesium-dependent-1A (PPM1A) dephosphorylates SMAD2/3, which suppresses TGF-ß signaling in keratinocytes and during Xenopus development; however, potential involvement of PPM1A in chronic kidney disease is unknown. PPM1A expression was dramatically decreased in the tubulointerstitium in obstructive and aristolochic acid nephropathy, which correlates with progression of fibrotic disease. Stable silencing of PPM1A in human kidney-2 human renal epithelial cells increased SMAD3 phosphorylation, stimulated expression of fibrotic genes, induced dedifferentiation, and orchestrated epithelial cell-cycle arrest via SMAD3-mediated connective tissue growth factor and plasminogen activator inhibitor-1 up-regulation. PPM1A stable suppression in normal rat kidney-49 renal fibroblasts, in contrast, promoted a SMAD3-dependent connective tissue growth factor and plasminogen activator inhibitor-1-induced proliferative response. Paracrine factors secreted by PPM1A-depleted epithelial cells augmented fibroblast proliferation (>50%) compared with controls. PPM1A suppression in renal cells further enhanced TGF-ß1-induced SMAD3 phosphorylation and fibrotic gene expression, whereas PPM1A overexpression inhibited both responses. Moreover, phosphate tensin homolog on chromosome 10 depletion in human kidney-2 cells resulted in loss of expression and decreased nuclear levels of PPM1A, which enhanced SMAD3-mediated fibrotic gene induction and growth arrest that were reversed by ectopic PPM1A expression. Thus, phosphate tensin homolog on chromosome 10 is an upstream regulator of renal PPM1A deregulation. These findings establish PPM1A as a novel repressor of the SMAD3 pathway in renal fibrosis and as a new therapeutic target in patients with chronic kidney disease.-Samarakoon, R., Rehfuss, A., Khakoo, N. S., Falke, L. L., Dobberfuhl, A. D., Helo, S., Overstreet, J. M., Goldschmeding, R., Higgins, P. J. Loss of expression of protein phosphatase magnesium-dependent 1A during kidney injury promotes fibrotic maladaptive repair.


Assuntos
Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Rim/metabolismo , Proteína Fosfatase 2C/metabolismo , Proteína Smad3/metabolismo , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Humanos , Rim/lesões , Magnésio/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
6.
PLoS Genet ; 10(10): e1004594, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340510

RESUMO

We recently reported that centrosomal protein 164 (CEP164) regulates both cilia and the DNA damage response in the autosomal recessive polycystic kidney disease nephronophthisis. Here we examine the functional role of CEP164 in nephronophthisis-related ciliopathies and concomitant fibrosis. Live cell imaging of RPE-FUCCI (fluorescent, ubiquitination-based cell cycle indicator) cells after siRNA knockdown of CEP164 revealed an overall quicker cell cycle than control cells, although early S-phase was significantly longer. Follow-up FACS experiments with renal IMCD3 cells confirm that Cep164 siRNA knockdown promotes cells to accumulate in S-phase. We demonstrate that this effect can be rescued by human wild-type CEP164, but not disease-associated mutants. siRNA of CEP164 revealed a proliferation defect over time, as measured by CyQuant assays. The discrepancy between accelerated cell cycle and inhibited overall proliferation could be explained by induction of apoptosis and epithelial-to-mesenchymal transition. Reduction of CEP164 levels induces apoptosis in immunofluorescence, FACS and RT-QPCR experiments. Furthermore, knockdown of Cep164 or overexpression of dominant negative mutant allele CEP164 Q525X induces epithelial-to-mesenchymal transition, and concomitant upregulation of genes associated with fibrosis. Zebrafish injected with cep164 morpholinos likewise manifest developmental abnormalities, impaired DNA damage signaling, apoptosis and a pro-fibrotic response in vivo. This study reveals a novel role for CEP164 in the pathogenesis of nephronophthisis, in which mutations cause ciliary defects coupled with DNA damage induced replicative stress, cell death, and epithelial-to-mesenchymal transition, and suggests that these events drive the characteristic fibrosis observed in nephronophthisis kidneys.


Assuntos
Cílios/genética , Fibrose/genética , Doenças Renais Císticas/genética , Proteínas dos Microtúbulos/genética , Animais , Apoptose/genética , Ciclo Celular/genética , Cílios/patologia , Dano ao DNA/genética , Transição Epitelial-Mesenquimal , Fibrose/patologia , Técnicas de Silenciamento de Genes , Humanos , Doenças Renais Císticas/patologia , Proteínas dos Microtúbulos/biossíntese , RNA Interferente Pequeno , Transdução de Sinais , Peixe-Zebra
7.
Am J Physiol Renal Physiol ; 311(5): F926-F934, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27558559

RESUMO

Age is associated with an increased prevalence of chronic kidney disease (CKD), which, through progressive tissue damage and fibrosis, ultimately leads to loss of kidney function. Although much effort is put into studying CKD development experimentally, age has rarely been taken into account. Therefore, we investigated the effect of age on the development of renal tissue damage and fibrosis in a mouse model of obstructive nephropathy (i.e., unilateral ureter obstruction; UUO). We observed that after 14 days, obstructed kidneys of old mice had more tubulointerstitial atrophic damage but less fibrosis than those of young mice. This was associated with reduced connective tissue growth factor (CTGF), and higher bone morphogenetic protein 6 (BMP6) expression and pSMAD1/5/8 signaling, while transforming growth factor-ß expression and transcriptional activity were no different in obstructed kidneys of old and young mice. In vitro, CTGF bound to and inhibited BMP6 activity. In summary, our data suggest that in obstructive nephropathy atrophy increases and fibrosis decreases with age and that this relates to increased BMP signaling, most likely due to higher BMP6 and lower CTGF expression.


Assuntos
Proteína Morfogenética Óssea 6/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais/fisiologia , Obstrução Ureteral/metabolismo , Fatores Etários , Animais , Proteína Morfogenética Óssea 6/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Rim/patologia , Camundongos , Fosforilação , Insuficiência Renal Crônica/patologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Obstrução Ureteral/patologia
8.
Growth Factors ; 34(3-4): 149-58, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27686612

RESUMO

AIMS: Connective tissue growth factor (CTGF) plays a key role in tissue fibrogenesis and growing evidence indicates a pathogenic role in cardiovascular disease. Aim of this study is to investigate the association of connective tissue growth factor (CTGF/CCN2) with cardiovascular risk and mortality in patients with manifest vascular disease. METHODS AND RESULTS: Plasma CTGF was measured by ELISA in a prospective cohort study of 1227 patients with manifest vascular disease (mean age 59.0 ± 9.9 years). Linear regression analysis was performed to quantify the association between CTGF and cardiovascular risk factors. Results are expressed as beta (ß) regression coefficients with 95% confidence intervals (CI). The relation between CTGF and the occurrence of new cardiovascular events and mortality was assessed with Cox proportional hazard analysis. Adjustments were made for potential confounding factors. Plasma CTGF was positively related to total cholesterol (ß 0.040;95%CI 0.013-0.067) and LDL cholesterol (ß 0.031;95%CI 0.000-0.062) and inversely to glomerular filtration rate (ß -0.004;95%CI -0.005 to -0.002). CTGF was significantly lower in patients with cerebrovascular disease. During a median follow-up of 6.5 years (IQR 5.3-7.4) 131 subjects died, 92 experienced an ischemic cardiac complication and 45 an ischemic stroke. CTGF was associated with an increased risk of new vascular events (HR 1.21;95%CI 1.04-1.42), ischemic cardiac events (HR 1.41;95%CI 1.18-1.67) and all-cause mortality (HR 1.18;95%CI 1.00-1.38) for every 1 nmol/L increase in CTGF. No relation was observed between CTGF and the occurrence of ischemic stroke. CONCLUSIONS: In patients with manifest vascular disease, elevated plasma CTGF confers an increased risk of new cardiovascular events and all-cause mortality.


Assuntos
Aterosclerose/sangue , Isquemia Encefálica/sangue , Fator de Crescimento do Tecido Conjuntivo/sangue , Acidente Vascular Cerebral/sangue , Idoso , Aterosclerose/epidemiologia , Aterosclerose/mortalidade , Isquemia Encefálica/epidemiologia , Isquemia Encefálica/mortalidade , Estudos de Casos e Controles , Colesterol/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/mortalidade
9.
J Mol Cell Cardiol ; 88: 82-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26410398

RESUMO

BACKGROUND: One of the main contributors to maladaptive cardiac remodeling is fibrosis. Connective tissue growth factor (CTGF), a matricellular protein that is secreted into the cardiac extracellular matrix by both cardiomyocytes and fibroblasts, is often associated with development of fibrosis. However, recent studies have questioned the role of CTGF as a pro-fibrotic factor. Therefore, we aimed to investigate the effect of CTGF on cardiac fibrosis, and on functional, structural, and electrophysiological parameters in a mouse model of CTGF knockout (KO) and chronic pressure overload. METHODS AND RESULTS: A new mouse model of global conditional CTGF KO induced by tamoxifen-driven deletion of CTGF, was subjected to 16weeks of chronic pressure overload via transverse aortic constriction (TAC, control was sham surgery). CTGF KO TAC mice presented with hypertrophic hearts, and echocardiography revealed a decrease in contractility on a similar level as control TAC mice. Ex vivo epicardial mapping showed a low incidence of pacing-induced ventricular arrhythmias (2/12 in control TAC vs. 0/10 in CTGF KO TAC, n.s.) and a tendency towards recovery of the longitudinal conduction velocity of CTGF KO TAC hearts. Picrosirius Red staining on these hearts unveiled increased fibrosis at a similar level as control TAC hearts. Furthermore, genes related to fibrogenesis were also similarly upregulated in both TAC groups. Histological analysis revealed an increase in fibronectin and vimentin protein expression, a significant reduction in connexin43 (Cx43) protein expression, and no difference in NaV1.5 expression of CTGF KO ventricles as compared with sham treated animals. CONCLUSION: Conditional CTGF inhibition failed to prevent TAC-induced cardiac fibrosis and hypertrophy. Additionally, no large differences were found in other parameters between CTGF KO and control TAC mice. With no profound effect of CTGF on fibrosis formation, other factors or pathways are likely responsible for fibrosis development.


Assuntos
Síndrome de Brugada/genética , Cardiomegalia/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Miocárdio/metabolismo , Remodelação Ventricular , Animais , Aorta/cirurgia , Compostos Azo , Síndrome de Brugada/etiologia , Síndrome de Brugada/metabolismo , Síndrome de Brugada/patologia , Doença do Sistema de Condução Cardíaco , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Fator de Crescimento do Tecido Conjuntivo/deficiência , Conexina 43/genética , Conexina 43/metabolismo , Constrição Patológica/complicações , Constrição Patológica/cirurgia , Ecocardiografia , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Cultura de Órgãos , Pressão , Transdução de Sinais , Vimentina/genética , Vimentina/metabolismo
10.
Nephrol Dial Transplant ; 29 Suppl 1: i30-i37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24493868

RESUMO

Kidney fibrosis is the common end point of chronic kidney disease independent of aetiology. Currently, no effective therapy exists to reduce kidney fibrosis. CCN2 appears to be an interesting candidate for anti-fibrotic drug targeting, because it holds a central position in the development of kidney fibrosis and interacts with a variety of factors that are involved in the fibrotic response, including transforming growth factor (TGF) ß and Bone morphogenetic proteins. Although CCN2 modifies many pathways, it does not appear to have a membrane receptor of its own. Numerous experimental and clinical studies lowering CCN2 bioavailability have shown promising results with minimal adverse side effects. This review aims to provide an overview of the current state of CCN2 research with a focus on anti-fibrotic therapy.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Animais , Fibrose/patologia , Humanos , Insuficiência Renal Crônica/patologia
11.
Hypertension ; 79(3): e42-e55, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35138869

RESUMO

BACKGROUND: CCN2 (cellular communication network factor 2) is a matricellular protein involved in cell communication and microenvironmental signaling responses. CCN2 is known to be overexpressed in several cardiovascular diseases, but its role is not completely understood. METHODS: Here, CCN2 involvement in aortic wall homeostasis and response to vascular injury was investigated in inducible <i>Ccn2</i>-deficient mice, with induction of vascular damage by infusion of Ang II (angiotensin II; 15 days), which is known to upregulate CCN2 expression in the aorta. RESULTS: Ang II infusion in CCN2-silenced mice lead to 60% mortality within 10 days due to rapid development and rupture of aortic aneurysms, as evidenced by magnetic resonance imaging, echography, and histological examination. <i>Ccn2</i> deletion decreased systolic blood pressure and caused aortic structural and functional changes, including elastin layer disruption, smooth muscle cell alterations, augmented distensibility, and increased metalloproteinase activity, which were aggravated by Ang II administration. Gene ontology analysis of RNA sequencing data identified aldosterone biosynthesis as one of the most enriched terms in CCN2-deficient aortas. Consistently, treatment with the mineralocorticoid receptor antagonist spironolactone before and during Ang II infusion reduced aneurysm formation and mortality, underscoring the importance of the aldosterone pathway in Ang II-induced aorta pathology. CONCLUSIONS: CCN2 is critically involved in the functional and structural homeostasis of the aorta and in maintenance of its integrity under Ang II-induced stress, at least, in part, by disruption of the aldosterone pathway. Thus, this study opens new avenues to future studies in disorders associated to vascular pathologies.


Assuntos
Aorta/metabolismo , Aneurisma Aórtico/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Angiotensina II/farmacologia , Animais , Aorta/efeitos dos fármacos , Aneurisma Aórtico/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
12.
Antioxidants (Basel) ; 10(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34943123

RESUMO

AKI, due to the fact of altered oxygen supply after kidney transplantation, is characterized by renal ischemia-reperfusion injury (IRI). Recent data suggest that AKI to CKD progression may be driven by cellular senescence evolving from prolonged DNA damage response (DDR) following oxidative stress. Cellular communication factor 2 (CCN2, formerly called CTGF) is a major contributor to CKD development and was found to aggravate DNA damage and the subsequent DDR-cellular senescence-fibrosis sequence following renal IRI. We therefore investigated the impact of CCN2 inhibition on oxidative stress and DDR in vivo and in vitro. Four hours after reperfusion, full transcriptome RNA sequencing of mouse IRI kidneys revealed CCN2-dependent enrichment of several signaling pathways, reflecting a different immediate stress response to IRI. Furthermore, decreased staining for γH2AX and p-p53 indicated reduced DNA damage and DDR in tubular epithelial cells of CCN2 knockout (KO) mice. Three days after IRI, DNA damage and DDR were still reduced in CCN2 KO, and this was associated with reduced oxidative stress, marked by lower lipid peroxidation, protein nitrosylation, and kidney expression levels of Nrf2 target genes (i.e., HMOX1 and NQO1). Finally, silencing of CCN2 alleviated DDR and lipid peroxidation induced by anoxia-reoxygenation injury in cultured PTECs. Together, our observations suggest that CCN2 inhibition might mitigate AKI by reducing oxidative stress-induced DNA damage and the subsequent DDR. Thus, targeting CCN2 might help to limit post-IRI AKI.

13.
J Cell Commun Signal ; 14(1): 47-52, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32291573

RESUMO

Pulmonary fibrosis is a severely disabling disease often leading to death. CCN2 (Cellular Communication Network factor 2, also known as CTGF) is a known mediator of fibrosis and clinical trials studying anti-CCN2 efficacy in pulmonary fibrosis are currently underway. Fork head box D1 (FoxD1) transcription factor is transiently expressed in several mesenchymal cell types, including those of fetal lungs. Differentiation of FoxD1-progenitor derived pericytes into myofibroblasts involves CCN2 expression and contributes importantly to maladaptive tissue remodeling in for example kidney and lung fibrosis models. To generate a model for studying the contribution of CCN2 expression in FoxD1-progenitor derived cells to development of fibrotic tissue remodeling, we set out to establish a FoxD1Cre - CCN2flox/flox mouse colony. However, all double-transgenic mice died soon after birth due to asphyxia. Histopathological examination revealed a reduction in alveolar space and lung weight, and subtle axial (thoracic and cervical) skeletal deformities. Together with the previously reported association of a FoxD1 containing locus with human adolescent idiopathic scoliosis, our data suggest that the fatal pulmonary hypoplasia resulting from selective deletion of CCN2 from FoxD1-progenitor derived mesenchymal cells developed secondary to impaired breathing movements due to aberrant axial skeletogenesis.

14.
Front Pharmacol ; 10: 770, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354486

RESUMO

Chronic kidney disease (CKD) is an increasing health burden (affecting approximately 13.4% of the population). Currently, no curative treatment options are available and treatment is focused on limiting the disease progression. The accumulation of senescent cells has been implicated in the development of kidney fibrosis by limiting tissue rejuvenation and through the secretion of pro-fibrotic and pro-inflammatory mediators termed as the senescence-associated secretory phenotype. The clearance of senescent cells in aging models results in improved kidney function, which shows promise for the options of targeting senescent cells in CKD. There are several approaches for the development of "senotherapies", the most rigorous of which is the elimination of senescent cells by the so-called senolytic drugs either newly developed or repurposed for off-target effects in terms of selectively inducing apoptosis in senescent cells. Several chemotherapeutics and checkpoint inhibitors currently used in daily oncological practice show senolytic properties. However, the applicability of such senolytic compounds for the treatment of renal diseases has hardly been investigated. A serious concern is that systemic side effects will limit the use of senolytics for kidney fibrosis. Specifically targeting senescent cells and/or targeted drug delivery to the kidney might circumvent these side effects. In this review, we discuss the connection between CKD and senescence, the pharmacological options for targeting senescent cells, and the means to specifically target the kidney.

15.
J Cell Commun Signal ; 13(4): 573-577, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32020419

RESUMO

Pulmonary fibrosis is a severely disabling disease often leading to death. CCN2 (Cellular Communication Network factor 2, also known as CTGF) is a known mediator of fibrosis and clinical trials studying anti-CCN2 efficacy in pulmonary fibrosis are currently underway. Fork head box D1 (FoxD1) transcription factor is transiently expressed in several mesenchymal cell types, including those of fetal lungs. Differentiation of FoxD1-progenitor derived pericytes into myofibroblasts involves CCN2 expression and contributes importantly to maladaptive tissue remodeling in e.g. kidney and lung fibrosis models. To generate a model for studying the contribution of CCN2 expression in FoxD1-progenitor derived cells to development of fibrotic tissue remodeling, we set out to establish a FoxD1Cre - CCN2flox/flox mouse colony. However, all double-transgenic mice died soon after birth due to asphyxia. Histopathological examination revealed a reduction in alveolar space and lung weight, and subtle axial (thoracic and cervical) skeletal deformities. Together with the previously reported association of a FoxD1 containing locus with human adolescent idiopathic scoliosis, our data suggest that the development of fatal pulmonary hypoplasia caused by selective deletion of CCN2 from FoxD1-progenitor derived mesenchymal cells was secondary to aberrant axial skeletogenesis.

16.
Physiol Rep ; 7(5): e14000, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30821122

RESUMO

Acute Tubular Injury (ATI) is the leading cause of Delayed Graft Function (DGF) after renal transplantation (RTX). Biopsies taken 1 week after RTX often show extensive tubular damage, which in most cases resolves due to the high regenerative capacity of the kidney. Not much is known about the relation between histological parameters of renal damage and regeneration immediately after RTX and renal outcome in patients with DGF. We retrospectively evaluated 94 patients with DGF due to ATI only. Biopsies were scored for morphological characteristics of renal damage (edema, casts, vacuolization, and dilatation) by three independent blinded observers. The regenerative potential was quantified by tubular cells expressing markers of proliferation (Ki67) and dedifferentiation (CD133). Parameters were related to renal function after recovery (CKD-EPI 3, 6, and 12 months posttransplantation). Quantification of morphological characteristics was reproducible among observers (Kendall's W ≥ 0.56). In a linear mixed model, edema and casts significantly associated with eGFR within the first year independently of clinical characteristics. Combined with donor age, edema and casts outperformed the Nyberg score, a well-validated clinical score to predict eGFR within the first year after transplantation (R2  = 0.29 vs. R2  = 0.14). Although the number of Ki67+ cells correlated to the extent of acute damage, neither CD133 nor Ki67 correlated with renal functional recovery. In conclusion, the morphological characteristics of ATI immediately after RTX correlate with graft function after DGF. Despite the crucial role of regeneration in recovery after ATI, we did not find a correlation between dedifferentiation marker CD133 or proliferation marker Ki67 and renal recovery after DGF.


Assuntos
Injúria Renal Aguda/etiologia , Proliferação de Células , Função Retardada do Enxerto/etiologia , Transplante de Rim/efeitos adversos , Túbulos Renais/patologia , Regeneração , Antígeno AC133/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Adulto , Idoso , Função Retardada do Enxerto/metabolismo , Função Retardada do Enxerto/patologia , Função Retardada do Enxerto/fisiopatologia , Feminino , Taxa de Filtração Glomerular , Humanos , Antígeno Ki-67/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/fisiopatologia , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento
17.
J Cell Commun Signal ; 11(2): 205-211, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28497232

RESUMO

A variety of conditional knock-out mice relying on Tamoxifen-driven ERT2/Cre -mediated recombination are available and have been used to study involvement of specific genes in kidney disease. However, recent data suggest that Tamoxifen itself might attenuate fibrosis when administered during experimental models of kidney disease. It has remained unclear whether this still applies also if kidney damage is initiated after a wash-out period has been implemented. Here we report that the commonly applied regimen of administration of 4 alternate day doses of 1mg Tamoxifen per mouse until 14 days prior to start of the actual experiment, in this case the induction of obstructive nephropathy by Unilateral Ureteral Obstruction (UUO), still attenuated fibrosis in female obstructed mouse kidneys, whereas this effect was not seen in male obstructed kidneys. Attenuation of fibrosis was accompanied by a reduction in nuclear ERα positivity despite absence of detectable levels of the active tamoxifen metabolite endoxifen throughout the UUO experiment. In conclusion, these results indicate that the Tamoxifen dosing regimen commonly applied in conditional gene targeting experiments might have prolonged confounding effects in female mice through attenuation of renal fibrosis independent of modulation of the expression of the targeted gene(s).

18.
J Cell Commun Signal ; 11(1): 39-48, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27766493

RESUMO

Treatment with rhBMP7 exerts profound protective effects in a wide variety of experimental models of renal disease. However, little is known about how these protective effects are mediated, and which cells in the kidney are targeted by exogenous rhBMP7 treatment. To determine if rhBMP7 increases glomerular and tubulointerstitial canonical BMP signaling, we performed Unilateral Ureteral Obstruction (UUO, a widely used obstructive nephropathy model) in mice reporting transcriptional activity downstream of canonical BMP signaling by the expression of GFP under the BMP Responsive Element of the Id1 promoter (BRE:gfp mice). We also analysed the impact of rhBMP7 treatment on severity of the UUO phenotype, on TGFß signaling, and on expression of CCN2 (CTGF). Despite profound protective effects with respect to morphological damage, macrophage infiltration, and fibrosis, no significant difference in GFP-expression was observed upon rhBMP7 administration. Also TGFß signalling was similar in rhBMP7 and vehicle treated mice, but CCN2 expression in obstructed kidneys was significantly reduced by rhBMP7 treatment. Of note, in heterozygous CCN2 mice (CCN2+/-) treatment with rhBMP7 did not (further) reduce the severity of kidney damage in the UUO-model. These data suggest that protection against obstructive nephropathy by exogenous rhBMP7 treatment relies primarily on non-canonical BMP signaling, and may be mediated in large part by downregulation of CCN2 expression.

19.
PLoS One ; 11(2): e0148540, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26845567

RESUMO

Matriptase-2 (TMPRSS6) is an important negative regulator of hepcidin expression; however, the effects of iron overload or accelerated erythropoiesis on liver TMPRSS6 protein content in vivo are largely unknown. We determined TMPRSS6 protein content in plasma membrane-enriched fractions of liver homogenates by immunoblotting, using a commercial antibody raised against the catalytic domain of TMPRSS6. Plasma membrane-enriched fractions were obtained by centrifugation at 3000 g and washing. TMPRSS6 was detected in the 3000 g fraction as a 120 kDa full-length protein in both mice and rats. Feeding of iron-deficient diet as well as erythropoietin treatment increased TMPRSS6 protein content in rats and mice by a posttranscriptional mechanism; the increase in TMPRSS6 protein by erythropoietin was also observed in Bmp6-mutant mice. Administration of high doses of iron to mice (200, 350 and 700 mg/kg) decreased TMPRSS6 protein content. Hemojuvelin was detected in the plasma membrane-enriched fractions of control animals as a full length protein of approximately 52 kDa; in iron deficient animals, the full length protein was partially cleaved at the N-terminus, resulting in an additional weak band of approximately 47 kDa. In livers from hemojuvelin-mutant mice, TMPRSS6 protein content was strongly decreased, suggesting that intact hemojuvelin is necessary for stable TMPRSS6 expression in the membrane. Overall, the results demonstrate posttranscriptional regulation of liver TMPRSS6 protein by iron status and erythropoietin administration, and provide support for the interaction of TMPRSS6 and hemojuvelin proteins in vivo.


Assuntos
Eritropoetina/metabolismo , Deficiências de Ferro , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Anemia Ferropriva/metabolismo , Animais , Proteína Morfogenética Óssea 6/genética , Modelos Animais de Doenças , Eritropoetina/farmacologia , Feminino , Proteínas Ligadas por GPI , Proteína da Hemocromatose , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Mutação , Ratos , ATPase Trocadora de Sódio-Potássio/metabolismo
20.
Nat Rev Nephrol ; 11(4): 233-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25584804

RESUMO

Fibrosis is the common end point of chronic kidney disease. The persistent production of inflammatory cytokines and growth factors leads to an ongoing process of extracellular matrix production that eventually disrupts the normal functioning of the organ. During fibrosis, the myofibroblast is commonly regarded as the predominant effector cell. Accumulating evidence has demonstrated a diverse origin of myofibroblasts in kidney fibrosis. Proposed major contributors of myofibroblasts include bone marrow-derived fibroblasts, tubular epithelial cells, endothelial cells, pericytes and interstitial fibroblasts; the published data, however, have not yet clearly defined the relative contribution of these different cellular sources. Myofibroblasts have been reported to originate from various sources, irrespective of the nature of the initial damage responsible for the induction of kidney fibrosis. Here, we review the possible relevance of the diversity of myofibroblast progenitors in kidney fibrosis and the implications for the development of novel therapeutic approaches. Specifically, we discuss the current status of preclinical and clinical antifibrotic therapy and describe targeting strategies that might help support resident and circulating cells to maintain or regain their original functional differentiation state. Such strategies might help these cells resist their transition to a myofibroblast phenotype to prevent, or even reverse, the fibrotic state.


Assuntos
Nefropatias/etiologia , Rim/patologia , Miofibroblastos , Ensaios Clínicos como Assunto , Fibrose/tratamento farmacológico , Fibrose/etiologia , Humanos , Nefropatias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA