Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Hum Genet ; 110(12): 2077-2091, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065072

RESUMO

Understanding the genetic basis of complex phenotypes is a central pursuit of genetics. Genome-wide association studies (GWASs) are a powerful way to find genetic loci associated with phenotypes. GWASs are widely and successfully used, but they face challenges related to the fact that variants are tested for association with a phenotype independently, whereas in reality variants at different sites are correlated because of their shared evolutionary history. One way to model this shared history is through the ancestral recombination graph (ARG), which encodes a series of local coalescent trees. Recent computational and methodological breakthroughs have made it feasible to estimate approximate ARGs from large-scale samples. Here, we explore the potential of an ARG-based approach to quantitative-trait locus (QTL) mapping, echoing existing variance-components approaches. We propose a framework that relies on the conditional expectation of a local genetic relatedness matrix (local eGRM) given the ARG. Simulations show that our method is especially beneficial for finding QTLs in the presence of allelic heterogeneity. By framing QTL mapping in terms of the estimated ARG, we can also facilitate the detection of QTLs in understudied populations. We use local eGRM to analyze two chromosomes containing known body size loci in a sample of Native Hawaiians. Our investigations can provide intuition about the benefits of using estimated ARGs in population- and statistical-genetic methods in general.


Assuntos
Genética Populacional , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Mapeamento Cromossômico/métodos , Modelos Genéticos , Fenótipo , Locos de Características Quantitativas/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética
2.
Am J Hum Genet ; 109(5): 812-824, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35417677

RESUMO

The application of genetic relationships among individuals, characterized by a genetic relationship matrix (GRM), has far-reaching effects in human genetics. However, the current standard to calculate the GRM treats linked markers as independent and does not explicitly model the underlying genealogical history of the study sample. Here, we propose a coalescent-informed framework, namely the expected GRM (eGRM), to infer the expected relatedness between pairs of individuals given an ancestral recombination graph (ARG) of the sample. Through extensive simulations, we show that the eGRM is an unbiased estimate of latent pairwise genome-wide relatedness and is robust when computed with ARG inferred from incomplete genetic data. As a result, the eGRM better captures the structure of a population than the canonical GRM, even when using the same genetic information. More importantly, our framework allows a principled approach to estimate the eGRM at different time depths of the ARG, thereby revealing the time-varying nature of population structure in a sample. When applied to SNP array genotypes from a population sample from Northern and Eastern Finland, we find that clustering analysis with the eGRM reveals population structure driven by subpopulations that would not be apparent via the canonical GRM and that temporally the population model is consistent with recent divergence and expansion. Taken together, our proposed eGRM provides a robust tree-centric estimate of relatedness with wide application to genetic studies.


Assuntos
Genoma , Modelos Genéticos , Finlândia , Genética Populacional , Genótipo , Humanos
3.
Nature ; 571(7766): E10, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31270456

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper. The original Letter has not been corrected.

4.
Nature ; 553(7686): 91-95, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29160310

RESUMO

Treatments that target immune checkpoints, such as the one mediated by programmed cell death protein 1 (PD-1) and its ligand PD-L1, have been approved for treating human cancers with durable clinical benefit. However, many patients with cancer fail to respond to compounds that target the PD-1 and PD-L1 interaction, and the underlying mechanism(s) is not well understood. Recent studies revealed that response to PD-1-PD-L1 blockade might correlate with PD-L1 expression levels in tumour cells. Hence, it is important to understand the mechanistic pathways that control PD-L1 protein expression and stability, which can offer a molecular basis to improve the clinical response rate and efficacy of PD-1-PD-L1 blockade in patients with cancer. Here we show that PD-L1 protein abundance is regulated by cyclin D-CDK4 and the cullin 3-SPOP E3 ligase via proteasome-mediated degradation. Inhibition of CDK4 and CDK6 (hereafter CDK4/6) in vivo increases PD-L1 protein levels by impeding cyclin D-CDK4-mediated phosphorylation of speckle-type POZ protein (SPOP) and thereby promoting SPOP degradation by the anaphase-promoting complex activator FZR1. Loss-of-function mutations in SPOP compromise ubiquitination-mediated PD-L1 degradation, leading to increased PD-L1 levels and reduced numbers of tumour-infiltrating lymphocytes in mouse tumours and in primary human prostate cancer specimens. Notably, combining CDK4/6 inhibitor treatment with anti-PD-1 immunotherapy enhances tumour regression and markedly improves overall survival rates in mouse tumour models. Our study uncovers a novel molecular mechanism for regulating PD-L1 protein stability by a cell cycle kinase and reveals the potential for using combination treatment with CDK4/6 inhibitors and PD-1-PD-L1 immune checkpoint blockade to enhance therapeutic efficacy for human cancers.


Assuntos
Antígeno B7-H1/metabolismo , Proteínas Culina/metabolismo , Ciclina D/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Vigilância Imunológica , Neoplasias/imunologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Evasão Tumoral/imunologia , Proteínas 14-3-3/metabolismo , Animais , Antígeno B7-H1/biossíntese , Proteínas Cdh1/metabolismo , Ciclo Celular , Linhagem Celular , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Proteínas Nucleares/química , Fosforilação , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias da Próstata/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Repressoras/química
5.
Nucleic Acids Res ; 45(10): e85, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28180283

RESUMO

Chromatin three-dimensional (3D) structure plays critical roles in gene expression regulation by influencing locus interactions and accessibility of chromatin regions. Here we propose a Markov process model to derive a chromosomal equilibrium distribution of randomly-moving molecules as a functional consequence of spatially organized genome 3D structures. The model calculates steady-state distributions (SSD) from Hi-C data as quantitative measures of each chromatin region's dynamic accessibility for transcription factors and histone modification enzymes. Different from other Hi-C derived features such as compartment A/B and interaction hubs, or traditional methods measuring chromatin accessibility such as DNase-seq and FAIRE-seq, SSD considers both chromatin-chromatin and protein-chromatin interactions. Through our model, we find that SSD could capture the chromosomal equilibrium distributions of activation histone modifications and transcription factors. Compared with compartment A/B, SSD has higher correlations with the binding of these histone modifications and transcription factors. In addition, we find that genes located in high SSD regions tend to be expressed at higher level. Furthermore, we track the change of genome organization during stem cell differentiation, and propose a two-stage model to explain the dynamic change of SSD and gene expression during differentiation, where chromatin organization genes first gain chromatin accessibility and are expressed before lineage-specific genes do. We conclude that SSD is a novel and better measure of dynamic chromatin activity and accessibility.


Assuntos
Cromatina/química , Genoma , Histonas/genética , Cadeias de Markov , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Diferenciação Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Mapeamento Cromossômico , Regulação da Expressão Gênica no Desenvolvimento , Código das Histonas , Histonas/metabolismo , Cinética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Neurônios/citologia , Neurônios/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
bioRxiv ; 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37066144

RESUMO

Understanding the genetic basis of complex phenotypes is a central pursuit of genetics. Genome-wide Association Studies (GWAS) are a powerful way to find genetic loci associated with phenotypes. GWAS are widely and successfully used, but they face challenges related to the fact that variants are tested for association with a phenotype independently, whereas in reality variants at different sites are correlated because of their shared evolutionary history. One way to model this shared history is through the ancestral recombination graph (ARG), which encodes a series of local coalescent trees. Recent computational and methodological breakthroughs have made it feasible to estimate approximate ARGs from large-scale samples. Here, we explore the potential of an ARG-based approach to quantitative-trait locus (QTL) mapping, echoing existing variance-components approaches. We propose a framework that relies on the conditional expectation of a local genetic relatedness matrix given the ARG (local eGRM). Simulations show that our method is especially beneficial for finding QTLs in the presence of allelic heterogeneity. By framing QTL mapping in terms of the estimated ARG, we can also facilitate the detection of QTLs in understudied populations. We use local eGRM to identify a large-effect BMI locus, the CREBRF gene, in a sample of Native Hawaiians in which it was not previously detectable by GWAS because of a lack of population-specific imputation resources. Our investigations can provide intuition about the benefits of using estimated ARGs in population- and statistical-genetic methods in general.

7.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873208

RESUMO

The demographic history of a population drives the pattern of genetic variation and is encoded in the gene-genealogical trees of the sampled alleles. However, existing methods to infer demographic history from genetic data tend to use relatively low-dimensional summaries of the genealogy, such as allele frequency spectra. As a step toward capturing more of the information encoded in the genome-wide sequence of genealogical trees, here we propose a novel framework called the genealogical likelihood (gLike), which derives the full likelihood of a genealogical tree under any hypothesized demographic history. Employing a graph-based structure, gLike summarizes across independent trees the relationships among all lineages in a tree with all possible trajectories of population memberships through time and efficiently computes the exact marginal probability under a parameterized demographic model. Through extensive simulations and empirical applications on populations that have experienced multiple admixtures, we showed that gLike can accurately estimate dozens of demographic parameters when the true genealogy is known, including ancestral population sizes, admixture timing, and admixture proportions. Moreover, when using genealogical trees inferred from genetic data, we showed that gLike outperformed conventional demographic inference methods that leverage only the allele-frequency spectrum and yielded parameter estimates that align with established historical knowledge of the past demographic histories for populations like Latino Americans and Native Hawaiians. Furthermore, our framework can trace ancestral histories by analyzing a sample from the admixed population without proxies for its source populations, removing the need to sample ancestral populations that may no longer exist. Taken together, our proposed gLike framework harnesses underutilized genealogical information to offer exceptional sensitivity and accuracy in inferring complex demographies for humans and other species, particularly as estimation of genome-wide genealogies improves.

8.
Eur Urol ; 81(5): 458-462, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35031163

RESUMO

A rare African ancestry-specific germline deletion variant in HOXB13 (X285K, rs77179853) was recently reported in Martinican men with early-onset prostate cancer. Given the role of HOXB13 germline variation in prostate cancer, we investigated the association between HOXB13 X285K and prostate cancer risk in a large sample of 22 361 African ancestry men, including 11 688 prostate cancer cases. The risk allele was present only in men of West African ancestry, with an allele frequency in men that ranged from 0.40% in Ghana and 0.31% in Nigeria to 0% in Uganda and South Africa, with a range of frequencies in men with admixed African ancestry from North America and Europe (0-0.26%). HOXB13 X285K was associated with 2.4-fold increased odds of prostate cancer (95% confidence interval [CI] = 1.5-3.9, p = 2 × 10-4), with greater risk observed for more aggressive and advanced disease (Gleason ≥8: odds ratio [OR] = 4.7, 95% CI = 2.3-9.5, p = 2 × 10-5; stage T3/T4: OR = 4.5, 95% CI = 2.0-10.0, p = 2 × 10-4; metastatic disease: OR = 5.1, 95% CI = 1.9-13.7, p = 0.001). We estimated that the allele arose in West Africa 1500-4600 yr ago. Further analysis is needed to understand how the HOXB13 X285K variant impacts the HOXB13 protein and function in the prostate. Understanding who carries this mutation may inform prostate cancer screening in men of West African ancestry. PATIENT SUMMARY: A rare African ancestry-specific germline deletion in HOXB13, found only in men of West African ancestry, was reported to be associated with an increased risk of overall and advanced prostate cancer. Understanding who carries this mutation may help inform screening for prostate cancer in men of West African ancestry.


Assuntos
Detecção Precoce de Câncer , Neoplasias da Próstata , Estudos de Casos e Controles , Predisposição Genética para Doença , Células Germinativas/patologia , Mutação em Linhagem Germinativa , Proteínas de Homeodomínio/genética , Humanos , Masculino , Antígeno Prostático Específico/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
9.
Sci China Life Sci ; 63(6): 825-834, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279284

RESUMO

Spatial chromatin structure plays fundamental roles in many vital biological processes including DNA replication, transcription, damage and repair. However, the current understanding of the secondary structure of chromatin formed by local nucleosome-nucleosome interactions remains controversial, especially for the existence and conformation of 30 nm structure. Since chromatin structure influences the fragment length distribution (FLD) of ionizing radiation-induced DNA strand breaks, a 3D chromatin model fitting FLD patterns can help to distinguish different models of chromatin structure. Here, we developed a novel "30-C" model combining 30 nm chromatin structure models with Hi-C data, which measured the spatial contact frequency between different loci in the genome. We first reconstructed the 3D coordinates of the 25 kb bins from Hi-C heatmaps. Within the 25 kb bins, lower level chromatin structures supported by recent studies were filled. Simulated FLD patterns based on the 30-C model were compared to published FLD patterns induced by heavy ion radiation to validate the models. Importantly, the 30-C model predicted that the most probable chromatin fiber structure for human interphase fibroblasts in vivo was 45% zig-zag 30 nm fibers and 55% 10 nm fibers.


Assuntos
Cromatina/genética , DNA/efeitos da radiação , Dano ao DNA/efeitos da radiação , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Nanoestruturas/química , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína
10.
Methods Mol Biol ; 1754: 167-181, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29536443

RESUMO

Transcriptome sequencing (RNA-seq) is becoming a standard experimental methodology for genome-wide characterization and quantification of transcripts at single base-pair resolution. However, downstream analysis of massive amount of sequencing data can be prohibitively technical for wet-lab researchers. A functionally integrated and user-friendly platform is required to meet this demand. Here, we present iSeq, an R-based Web server, for RNA-seq data analysis and visualization. iSeq is a streamlined Web-based R application under the Shiny framework, featuring a simple user interface and multiple data analysis modules. Users without programming and statistical skills can analyze their RNA-seq data and construct publication-level graphs through a standardized yet customizable analytical pipeline. iSeq is accessible via Web browsers on any operating system at http://iseq.cbi.pku.edu.cn .


Assuntos
Biologia Computacional/métodos , Análise de Dados , RNA/genética , Análise de Sequência de RNA/métodos , Software , Biologia Computacional/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Internet , Análise de Sequência de RNA/instrumentação , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA