Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 58(22): 14939-14980, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31668070

RESUMO

Nanostructured materials are essential building blocks for the fabrication of new devices for energy harvesting/storage, sensing, catalysis, magnetic, and optoelectronic applications. However, because of the increase of technological needs, it is essential to identify new functional materials and improve the properties of existing ones. The objective of this Viewpoint is to examine the state of the art of atomic-scale simulative and experimental protocols aimed to the design of novel functional nanostructured materials, and to present new perspectives in the relative fields. This is the result of the debates of Symposium I "Atomic-scale design protocols towards energy, electronic, catalysis, and sensing applications", which took place within the 2018 European Materials Research Society fall meeting.

2.
J Am Chem Soc ; 139(37): 12883-12886, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28853870

RESUMO

Hybrid organic-inorganic compounds attract a lot of interest for their flexible structures and multifunctional properties. For example, they can have coexisting magnetism and ferroelectricity whose possible coupling gives rise to magnetoelectricity. Here using first-principles computations, we show that, in a perovskite metal-organic framework (MOF), the magnetic and electric orders are further coupled to optical excitations, leading to an Electric tuning of the Magneto-Optical Kerr effect (EMOKE). Moreover, the Kerr angle can be switched by reversal of both ferroelectric and magnetic polarization only. The interplay between the Kerr angle and the organic-inorganic components of MOFs offers surprising unprecedented tools for engineering MOKE in complex compounds. Note that this work may be relevant to acentric magnetic systems in general, e.g., multiferroics.

3.
J Phys Condens Matter ; 36(31)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657636

RESUMO

We investigate the magnetic and transport properties of a kagome magnet YbMn6Sn6. We have grown YbMn6Sn6single crystals having a HfFe6Ge6type structure with ordered Yb and Sn atoms, which is different from the distorted structure previously reported. The single crystal undergoes a ferromagnetic phase transition around 300 K and a ferrimagnetic transition at approximately 30 K, and the magnetic transition at low temperature may be correlated to the ordered Yb sublattice. Negative magnetoresistance has been observed at high temperatures, while the positive magnetoresistance appears at 5 K when the current is oriented out of kagome plane. We observe a large anisotropic anomalous Hall effect with the intrinsic Hall contribution of 141 Ω-1cm-1forσzxintand 32 Ω-1cm-1forσxyint, respectively. These values are similar to those in YMn6Sn6with the same anisotropy. The magnetic transition and anomalous Hall behavior in YbMn6Sn6highlights the influence of the ordered Yb atoms and rare earth elements on its magnetic and transport properties.

4.
ACS Appl Mater Interfaces ; 15(18): 22282-22290, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37078781

RESUMO

We studied the magneto-optical Kerr effect (MOKE) of two-dimensional (2D) heterostructure CrI3/In2Se3/CrI3 using density functional theory calculations and symmetry analysis. The spontaneous polarization in the In2Se3 ferroelectric layer and the antiferromagnetic ordering in CrI3 layers break the mirror and the time-reversal symmetry, thus activating MOKE. We show that the Kerr angle can be reversed by either the polarization or the antiferromagnetic order parameter. Our results suggest that ferroelectric and antiferromagnetic 2D heterostructures could be exploited for ultracompact information storage devices, where the information is encoded by the two ferroelectric or the two time-reversed antiferromagnetic states and the read-out is performed optically by MOKE.

5.
Science ; 381(6655): 325-330, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37347950

RESUMO

The ability to control the underlying lattice geometry of a system may enable transitions between emergent quantum ground states. We report in situ gate switching between honeycomb and triangular lattice geometries of an electron many-body Hamiltonian in rhombohedral (R)-stacked molybdenum ditelluride (MoTe2) moiré bilayers, resulting in switchable magnetic exchange interactions. At zero electric field, we observed a correlated ferromagnetic insulator near one hole per moiré unit cell with a widely tunable Curie temperature up to 14 K. Applying an electric field switched the system into a half-filled triangular lattice with antiferromagnetic interactions; further doping this layer-polarized superlattice tuned the antiferromagnetic exchange interaction back to ferromagnetic. Our work demonstrates R-stacked MoTe2 moirés to be a laboratory for engineering correlated states with nontrivial topology.

6.
Nat Phys ; 18(7): 813-818, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35855397

RESUMO

The crystal symmetry of a material dictates the type of topological band structures it may host, and therefore symmetry is the guiding principle to find topological materials. Here we introduce an alternative guiding principle, which we call 'quasi-symmetry'. This is the situation where a Hamiltonian has an exact symmetry at lower-order that is broken by higher-order perturbation terms. This enforces finite but parametrically small gaps at some low-symmetry points in momentum space. Untethered from the restraints of symmetry, quasi-symmetries eliminate the need for fine-tuning as they enforce that sources of large Berry curvature will occur at arbitrary chemical potentials. We demonstrate that a quasi-symmetry in the semi-metal CoSi stabilizes gaps below 2 meV over a large near-degenerate plane that can be measured in the quantum oscillation spectrum. The application of in-plane strain breaks the crystal symmetry and gaps the degenerate point, observable by new magnetic breakdown orbits. The quasi-symmetry, however, does not depend on spatial symmetries and hence transmission remains fully coherent. These results demonstrate a class of topological materials with increased resilience to perturbations such as strain-induced crystalline symmetry breaking, which may lead to robust topological applications as well as unexpected topology beyond the usual space group classifications.

7.
Adv Mater ; 33(7): e2003168, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33296128

RESUMO

The emerging class of topological materials provides a platform to engineer exotic electronic structures for a variety of applications. As complex band structures and Fermi surfaces can directly benefit thermoelectric performance it is important to identify the role of featured topological bands in thermoelectrics particularly when there are coexisting classic regular bands. In this work, the contribution of Dirac bands to thermoelectric performance and their ability to concurrently achieve large thermopower and low resistivity in novel semimetals is investigated. By examining the YbMnSb2 nodal line semimetal as an example, the Dirac bands appear to provide a low resistivity along the direction in which they are highly dispersive. Moreover, because of the regular-band-provided density of states, a large Seebeck coefficient over 160 µV K-1 at 300 K is achieved in both directions, which is very high for a semimetal with high carrier concentration. The combined highly dispersive Dirac and regular bands lead to ten times increase in power factor, reaching a value of 2.1 mW m-1 K-2 at 300 K. The present work highlights the potential of such novel semimetals for unusual electronic transport properties and guides strategies towards high thermoelectric performance.

8.
Nat Commun ; 12(1): 6213, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711834

RESUMO

The phase offset of quantum oscillations is commonly used to experimentally diagnose topologically nontrivial Fermi surfaces. This methodology, however, is inconclusive for spin-orbit-coupled metals where π-phase-shifts can also arise from non-topological origins. Here, we show that the linear dispersion in topological metals leads to a T2-temperature correction to the oscillation frequency that is absent for parabolic dispersions. We confirm this effect experimentally in the Dirac semi-metal Cd3As2 and the multiband Dirac metal LaRhIn5. Both materials match a tuning-parameter-free theoretical prediction, emphasizing their unified origin. For topologically trivial Bi2O2Se, no frequency shift associated to linear bands is observed as expected. However, the π-phase shift in Bi2O2Se would lead to a false positive in a Landau-fan plot analysis. Our frequency-focused methodology does not require any input from ab-initio calculations, and hence is promising for identifying correlated topological materials.

9.
Nat Commun ; 11(1): 3507, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665572

RESUMO

It has recently been proposed that combining chirality with topological band theory results in a totally new class of fermions. Understanding how these unconventional quasiparticles propagate and interact remains largely unexplored so far. Here, we use scanning tunneling microscopy to visualize the electronic properties of the prototypical chiral topological semimetal PdGa. We reveal chiral quantum interference patterns of opposite spiraling directions for the two PdGa enantiomers, a direct manifestation of the change of sign of their Chern number. Additionally, we demonstrate that PdGa remains topologically non-trivial over a large energy range, experimentally detecting Fermi arcs in an energy window of more than 1.6 eV that is symmetrically centered around the Fermi level. These results are a consequence of the deep connection between chirality in real and reciprocal space in this class of materials, and, thereby, establish PdGa as an ideal topological chiral semimetal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA