RESUMO
NIR-II fluorescence imaging-guided photothermal therapy (PTT) has been widely investigated due to its great application potential in tumor theranostics. PTT is an effective and non-invasive tumor treatment method that can adapt to tumor hypoxia; nevertheless, simple and effective strategies are still desired to develop new materials with excellent PTT properties to meet clinical requirements. In this work, we developed a bromine-substitution strategy to enhance the PTT of A-D-A'-D-A π-conjugated molecules. The experimental results reveal that bromine substitution can notably enhance the absorptivity (ϵ) and photothermal conversion efficiency (PCE) of the π-conjugated molecules, resulting in the brominated molecules generating two times more heat (ϵ808â nm ×PCE) than their unsubstituted counterpart. We disclose that the enhanced photothermal properties of bromine-substituted π-conjugated molecules are a combined outcome of the heavy-atom effect, enhanced ICT effect, and more intense bromine-mediate intermolecular π-π stacking. Finally, the NIR-II tumor imaging capability and efficient PTT tumor ablation of the brominated π-conjugated materials demonstrate that bromine substitution is a promising strategy for developing future high-performance NIR-II imaging-guided PTT agents.