Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2683: 13-20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300763

RESUMO

Cortical interneurons (cINs), especially those that are derived from the medial ganglionic eminence (MGE) during early development, are associated with various neuropsychiatric disorders. Human pluripotent stem cell (hPSC)-derived cINs can provide unlimited cell sources for studying disease mechanisms and developing novel therapeutics. Here, we describe an optimized method to generate homogeneous cIN populations based on three-dimensional (3D) cIN sphere generation. This optimized differentiation system could sustain generated cINs relatively long term without compromising their survival or phenotypes.


Assuntos
Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Interneurônios
2.
Front Psychiatry ; 14: 1336085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188058

RESUMO

Psychiatric disorders, such as schizophrenia (SCZ) and autism spectrum disorders (ASD), represent a global health challenge with their poorly understood and complex etiologies. Cortical interneurons (cINs) are the primary inhibitory neurons in the cortex and their subtypes, especially those that are generated from the medial ganglionic emission (MGE) region, have been shown to play an important role in the pathogenesis of these psychiatric disorders. Recent advances in induced pluripotent stem cell (iPSC) technologies provide exciting opportunities to model and study these disorders using human iPSC-derived cINs. In this review, we present a comprehensive overview of various methods employed to generate MGE-type cINs from human iPSCs, which are mainly categorized into induction by signaling molecules vs. direct genetic manipulation. We discuss their advantages, limitations, and potential applications in psychiatric disorder modeling to aid researchers in choosing the appropriate methods based on their research goals. We also provide examples of how these methods have been applied to study the pathogenesis of psychiatric disorders. In addition, we discuss ongoing challenges and future directions in the field. Overall, iPSC-derived cINs provide a powerful tool to model the developmental pathogenesis of psychiatric disorders, thus aiding in uncovering disease mechanisms and potential therapeutic targets. This review article will provide valuable resources for researchers seeking to navigate the complexities of cIN generation methods and their applications in the study of psychiatric disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA