Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36363970

RESUMO

Sonodynamic therapy (SDT) triggered by ultrasound (US) has attracted increasing attention owing to its ability to overcome critical limitations, including low tissue-penetration depth and phototoxicity in photodynamic therapy (PDT). Biogenic metal oxide nanoparticles (NPs) have been used as anti-cancer drugs due to their biocompatibility properties with most biological systems. Here, sonosensitizer MWO4-PEG NPs (M = Fe Mn Co Ni) were synthesized as inhibitors to activation-induced cytidine deaminase (AID), thus neutralizing the extensive carcinogenesis of AID in diffuse large B-cell lymphoma (DLBCL). The physiological properties of these nanomaterials were examined using transmission electron microscopy (TEM). The inhibition of NPs to AID was primarily identified by the affinity interaction prediction between reactive oxygen species (ROS) and AID through molecular dynamics and molecular docking technology. The cell apoptosis and ROS generation in US-triggered NPs treated DLBCL cells (with high levels of AID) were also detected to indicate the sonosensitivity and toxicity of MWO4-PEG NPs to DLBCL cells. The anti-lymphoma studies using DLBCL and AID-deficient DLBCL cell lines indicated a concentration-dependent profile. The synthesized MWO4-PEG NPs in this study manifested good sonodynamic inhibitory effects to AID and well treatment for AID-positive hematopoietic cancers.


Assuntos
Linfoma Difuso de Grandes Células B , Nanopartículas Metálicas , Nanopartículas , Terapia por Ultrassom , Humanos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Óxidos , Polietilenoglicóis/uso terapêutico
2.
Front Immunol ; 14: 1221528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600817

RESUMO

Activation-induced cytidine deaminase (AID) plays a crucial role in promoting B cell diversification through somatic hypermutation (SHM) and class switch recombination (CSR). While AID is primarily associated with the physiological function of humoral immune response, it has also been linked to the initiation and progression of lymphomas. Abnormalities in AID have been shown to disrupt gene networks and signaling pathways in both B-cell and T-cell lineage lymphoblastic leukemia, although the full extent of its role in carcinogenesis remains unclear. This review proposes an alternative role for AID and explores its off-target effects in regulating tumorigenesis. In this review, we first provide an overview of the physiological function of AID and its regulation. AID plays a crucial role in promoting B cell diversification through SHM and CSR. We then discuss the off-target effects of AID, which includes inducing mutations of non-Igs, epigenetic modification, and the alternative role as a cofactor. We also explore the networks that keep AID in line. Furthermore, we summarize the off-target effects of AID in autoimmune diseases and hematological neoplasms. Finally, we assess the off-target effects of AID in solid tumors. The primary focus of this review is to understand how and when AID targets specific gene loci and how this affects carcinogenesis. Overall, this review aims to provide a comprehensive understanding of the physiological and off-target effects of AID, which will contribute to the development of novel therapeutic strategies for autoimmune diseases, hematological neoplasms, and solid tumors.


Assuntos
Doenças Autoimunes , Citidina Desaminase , Neoplasias Hematológicas , Humanos , Carcinogênese , Transformação Celular Neoplásica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA