Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell Commun Signal ; 21(1): 308, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904190

RESUMO

BACKGROUND: Integrins are closely related to mechanical conduction and play a crucial role in the osteogenesis of human mesenchymal stem cells. Here we wondered whether tensile stress could influence cell differentiation through integrin αVß3. METHODS: We inhibited the function of integrin αVß3 of human mesenchymal stem cells by treating with c(RGDyk). Using cytochalasin D and verteporfin to inhibit polymerization of microfilament and function of nuclear Yes-associated protein (YAP), respectively. For each application, mesenchymal stem cells were loaded by cyclic tensile stress of 10% at 0.5 Hz for 2 h daily. Mesenchymal stem cells were harvested on day 7 post-treatment. Western blotting and quantitative RT-PCR were used to detect the expression of alkaline phosphatase (ALP), RUNX2, ß-actin, integrin αVß3, talin-1, vinculin, FAK, and nuclear YAP. Immunofluorescence staining detected vinculin, actin filaments, and YAP nuclear localization. RESULTS: Cyclic tensile stress could increase the expression of ALP and RUNX2. Inhibition of integrin αVß3 activation led to rearrangement of actin filaments and downregulated the expression of ALP, RUNX2 and promoted YAP nuclear localization. When microfilament polymerization was inhibited, ALP, RUNX2, and nuclear YAP nuclear localization decreased. Inhibition of YAP nuclear localization could reduce the expression of ALP and RUNX2. CONCLUSIONS: Cyclic tensile stress promotes early osteogenesis of human mesenchymal stem cells via the integrin αVß3-actin filaments axis. YAP nuclear localization participates in this process of human mesenchymal stem cells. Video Abstract.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Citoesqueleto de Actina/metabolismo , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Integrina alfaVbeta3/metabolismo , Células-Tronco Mesenquimais/metabolismo , Vinculina/metabolismo
2.
Stem Cells ; 39(11): 1478-1488, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34346140

RESUMO

Mesenchymal stem cells (MSCs) are known for their multilineage differentiation potential with immune-modulatory properties. The molecular underpinnings of differentiation remain largely undefined. In this study, we investigated the cellular and molecular features of chemically induced osteogenesis from MSC isolated from human adipose tissue (human adipose MSCs, hAMSCs) using single-cell RNA-sequencing (scRNA-seq). We found that a near complete differentiation of osteogenic clusters from hAMSCs under a directional induction. Both groups of cells are heterogeneous, and some of the hAMSCs cells are intrinsically prepared for osteogenesis, while variant OS clusters seems in cooperation with a due division of the general function. We identified a set of genes related to cell stress response highly expressed during the differentiation. We also characterized a series of transitional transcriptional waves throughout the process from hAMSCs to osteoblast and specified the unique gene networks and epigenetic status as key markers of osteogenesis.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Tecido Adiposo , Diferenciação Celular/genética , Células Cultivadas , Humanos , Osteogênese/genética , Transcriptoma/genética
3.
FASEB J ; 35(2): e21175, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33205555

RESUMO

Human adipose-derived stem cells (hASCs) are ideal seed cells for tissue engineering due to their multidirectional differentiation potential. Microfilaments, microtubules, and intermediate filaments are responsible for supporting the intracellular space. Vimentin, a type III intermediate filament protein that is specifically expressed in cells of mesenchymal origin, can function as a scaffold and endow cells with tension and shear stress resistance. Actin stress fibers (ASF) act as an important physical device in stress signal transduction, providing stiffness for cells, and promoting osteogenesis. Through direct physical contact, cross-linkers, and spatial interactions, vimentin and actin networks exist as intersecting entities. Spatial interactions occur in the overlapping area of cytoskeleton subsystems, which could affect cell morphology, cell mechanics, and cell fate. However, how does the spatial organization between the cytoskeletal subsystems changed during osteogenesis, especially between vimentin and ASF, is still not understood, and its mechanism effect on cell fate remains unclear. In our study, WB experiment was used to detect the expression changes in Vimentin, ASF, and other proteins. Cells were reconstructed by three-dimensional scanning with fluorescence microscope, and the spatial thickness of vimentin and ASF cytoskeletons and the thickness of the overlapping area between them were calculated, respectively, so as to observe the spatial reorganization of vimentin and ASF in cells. Cytochalasin D (an inhibitor of actin polymerization) and vimentin upregulated/downregulated cells were used to verify the change in the spatial organization between vimentin and ASF and its influence on osteogenesis. Then, heat shock protein 27 (HSP27) was downregulated to illuminate the regulatory mechanisms of spatial organization between vimentin and ASF during osteogenesis. The amounts and the spatial positions of vimentin and actin stress fiber exhibited opposite trends during osteogenesis. Through controlling the anchor sites on the nucleus, intermediate filaments vimentin can reduce the spatial proportion of actin stress fibers, which can be regulated by HSP27. In addition, depolymerization of actin stress fibers lead to lower osteogenic differentiation ability, resulting in osteogenesis and lipogenesis existed simultaneously, that can be resisted by vimentin. Our data indicate that the spatial reorganization of vimentin and actin stress fibers is a key factor in the regulation of the differentiation state of hASCs. And their spatial overlapping area is detrimental to hASCs osteogenesis, providing a new perspective for further exploring the mechanism underlying hASCs osteogenesis.


Assuntos
Actinas/metabolismo , Tecido Adiposo/citologia , Diferenciação Celular/genética , Osteogênese/genética , Transdução de Sinais/genética , Células-Tronco/metabolismo , Fibras de Estresse/metabolismo , Vimentina/metabolismo , Actinas/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Citocalasina D/farmacologia , Citoplasma/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Microscopia de Fluorescência , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transfecção , Vimentina/genética
4.
Cell Mol Biol Lett ; 26(1): 15, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858321

RESUMO

BACKGROUND: Actin is an essential cellular protein that assembles into microfilaments and regulates numerous processes such as cell migration, maintenance of cell shape, and material transport. METHODS: In this study, we explored the effect of actin polymerization state on the osteogenic differentiation of human adipose-derived stem cells (hASCs). The hASCs were treated for 7 days with different concentrations (0, 1, 5, 10, 20, and 50 nM) of jasplakinolide (JAS), a reagent that directly polymerizes F-actin. The effects of the actin polymerization state on cell proliferation, apoptosis, migration, and the maturity of focal adhesion-related proteins were assessed. In addition, western blotting and alizarin red staining assays were performed to assess osteogenic differentiation. RESULTS: Cell proliferation and migration in the JAS (0, 1, 5, 10, and 20 nM) groups were higher than in the control group and the JAS (50 nM) group. The FAK, vinculin, paxillin, and talin protein expression levels were highest in the JAS (20 nM) group, while zyxin expression was highest in the JAS (50 nM) group. Western blotting showed that osteogenic differentiation in the JAS (0, 1, 5, 10, 20, and 50 nM) group was enhanced compared with that in the control group, and was strongest in the JAS (50 nM) group. CONCLUSIONS: In summary, our data suggest that the actin polymerization state may promote the osteogenic differentiation of hASCs by regulating the protein expression of focal adhesion-associated proteins in a concentration-dependent manner. Our findings provide valuable information for exploring the mechanism of osteogenic differentiation in hASCs.


Assuntos
Actinas/metabolismo , Diferenciação Celular , Osteogênese , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Depsipeptídeos/farmacologia , Adesões Focais/efeitos dos fármacos , Humanos , Osteogênese/efeitos dos fármacos , Polimerização , Células-Tronco/citologia , Regulação para Cima/efeitos dos fármacos , Zixina/genética , Zixina/metabolismo
5.
J Cell Mol Med ; 24(14): 7968-7978, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32463168

RESUMO

The mechanisms underlying the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) remain unclear. In the present study, we aimed to identify the key biological processes during osteogenic differentiation. To this end, we downloaded three microarray data sets from the Gene Expression Omnibus (GEO) database: GSE12266, GSE18043 and GSE37558. Differentially expressed genes (DEGs) were screened using the limma package, and enrichment analysis was performed. Protein-protein interaction network (PPI) analysis and visualization analysis were performed with STRING and Cytoscape. A total of 240 DEGs were identified, including 147 up-regulated genes and 93 down-regulated genes. Functional enrichment and pathways of the present DEGs include extracellular matrix organization, ossification, cell division, spindle and microtubule. Functional enrichment analysis of 10 hub genes showed that these genes are mainly enriched in microtubule-related biological changes, that is sister chromatid segregation, microtubule cytoskeleton organization involved in mitosis, and spindle microtubule. Moreover, immunofluorescence and Western blotting revealed dramatic quantitative and morphological changes in the microtubules during the osteogenic differentiation of human adipose-derived stem cells. In summary, the present results provide novel insights into the microtubule- and cytoskeleton-related biological process changes, identifying candidates for the further study of osteogenic differentiation of the mesenchymal stem cells.


Assuntos
Diferenciação Celular/genética , Biologia Computacional , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Humanos , Anotação de Sequência Molecular , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transdução de Sinais
6.
J Environ Manage ; 217: 762-774, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29656257

RESUMO

Nitrogen (N) and phosphorus (P) play a critical role in agricultural production and cause many environmental disturbances. By combing life cycle assessment (LCA) method with the mass balance principle of substance flow analysis (SFA), this study establishes a nutrient-derived environmental impact assessment (NEIA) model to analyze the environmental impacts caused by nutrient-containing substances of agricultural production in China during 1978-2015. The agricultural production system is composed of crop farming and livestock breeding, and the environmental impacts include energy consumption, global warming, acidification, and eutrophication. The results show all these environmental impacts had increased to 8.22*109 GJ, 5.01*108 t CO2-eq, 2.41*107 t SO2-eq, and 7.18*107 t PO43--eq, respectively. It is noted the energy consumption and the climate change caused by the crop farming were always higher than those from livestock breeding, which were average 60 and two times, respectively. While the acidification and the eutrophication were opposite after 1995 and 2000, even they were similar. This was mainly due to the high N application including synthetic N fertilizer (from 1.33*109 GJ to 2.08*109 GJ), applied manure (from 4.94*108 GJ to 5.65*108 GJ) and applied crop residue (from 2.94*108 GJ to 5.30*109 GJ), while the synthetic N fertilizer was controlled and the livestock expanded rapidly after 1995. Among the sub-categories, the three staple crops (rice, wheat, and maize) contributed greater environmental impacts, which were about two to 10 times as other crops and livestock, due to their high fertilizer uses, sown areas and harvests. While the oil crops and fruit consumed the least energies because of their much lower fertilizer-use intensities. Pig and poultry especially pig also caused obvious effects on environment (even 20 times as other livestock) because of their large quantities and excretions, which emitted much higher N2O and P loss resulting in much higher climate change, acidification and eutrophication than other livestock. Then the study proposes the nutrient management in agricultural production by considering crop production, livestock breeding and dietary adjustment, so that some valuable experiences can be shared by the stakeholders in other Chinese regions.


Assuntos
Agricultura , Meio Ambiente , Fertilizantes , Animais , China , Produtos Agrícolas , Melhoramento Vegetal , Suínos
7.
Ecotoxicol Environ Saf ; 139: 102-108, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28113113

RESUMO

Understanding sorption of PFOA on soil particles is crucial to evaluate its environmental risk. Here, sorption of PFOA onto ten agricultural soils was examined. The influence of soil physico-chemical properties on PFOA sorption was investigated. The sorption rate of PFOA followed a pseudo-second-order kinetics. Isotherm data of PFOA sorption was fitted with both Freundlich and linear models and the latter fitted better. The sorption-desorption of PFOA onto ten soil samples depended on soil organic carbon content and composition of soil minerals. The sorption and desorption isotherms of PFOA on ten soils were linear, except for the sorption of PFOA onto a few soils, which was described by the Freundlich equation with the parameter N >1. The main sorption mechanism of PFOA was hydrophobic interaction between the perfluorinated carbon chain and the organic matter of soil, as evidenced by the correlation between the solid-liquid distribution coefficient and the fraction of soil organic carbon. The sorption of PFOA in soils was highly irreversible.


Assuntos
Caprilatos/análise , Fluorocarbonos/análise , Poluentes do Solo/análise , Solo/química , Adsorção , Agricultura , Carbono/química , China , Cinética
8.
Front Cell Dev Biol ; 12: 1403396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813086

RESUMO

PHD (plant homeodomain) finger proteins emerge as central epigenetic readers and modulators in cancer biology, orchestrating a broad spectrum of cellular processes pivotal to oncogenesis and tumor suppression. This review delineates the dualistic roles of PHD fingers in cancer, highlighting their involvement in chromatin remodeling, gene expression regulation, and interactions with cellular signaling networks. PHD fingers' ability to interpret specific histone modifications underscores their influence on gene expression patterns, impacting crucial cancer-related processes such as cell proliferation, DNA repair, and apoptosis. The review delves into the oncogenic potential of certain PHD finger proteins, exemplified by PHF1 and PHF8, which promote tumor progression through epigenetic dysregulation and modulation of signaling pathways like Wnt and TGFß. Conversely, it discusses the tumor-suppressive functions of PHD finger proteins, such as PHF2 and members of the ING family, which uphold genomic stability and inhibit tumor growth through their interactions with chromatin and transcriptional regulators. Additionally, the review explores the therapeutic potential of targeting PHD finger proteins in cancer treatment, considering their pivotal roles in regulating cancer stem cells and influencing the immune response to cancer therapy. Through a comprehensive synthesis of current insights, this review underscores the complex but promising landscape of PHD finger proteins in cancer biology, advocating for further research to unlock novel therapeutic avenues that leverage their unique cellular roles.

9.
Front Microbiol ; 14: 1098236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819062

RESUMO

Coal mining subsidence lakes are classic hydrologic characteristics created by underground coal mining and represent severe anthropogenic disturbances and environmental challenges. However, the assembly mechanisms and diversity of microbial communities shaped by such environments are poorly understood yet. In this study, we explored aquatic bacterial community diversity and ecological assembly processes in subsidence lakes during winter and summer using 16S rRNA gene sequencing. We observed that clear bacterial community structure was driven by seasonality more than by habitat, and the α-diversity and functional diversity of the bacterial community in summer were significantly higher than in winter (p < 0.001). Canonical correspondence analysis indicated that temperature and chlorophyll-a were the most crucial contributing factors influencing the community season variations in subsidence lakes. Specifically, temperature and chlorophyll-a explained 18.26 and 14.69% of the community season variation, respectively. The bacterial community variation was driven by deterministic processes in winter but dominated by stochastic processes in summer. Compared to winter, the network of bacterial communities in summer exhibited a higher average degree, modularity, and keystone taxa (hubs and connectors in a network), thereby forming a highly complex and stable community structure. These results illustrate the clear season heterogeneity of bacterial communities in subsidence lakes and provide new insights into revealing the effects of seasonal succession on microbial assembly processes in coal mining subsidence lake ecosystems.

10.
Clin Epigenetics ; 15(1): 30, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849889

RESUMO

BACKGROUND: PLCD1, located at 3p22, encodes an enzyme that mediates cellular metabolism and homeostasis, intracellular signal transduction and movement. PLCD1 plays a pivotal role in tumor suppression of several types of cancers; however, its expression and underlying molecular mechanisms in renal cell carcinoma (RCC) pathogenesis remain elusive. METHODS: RT-PCR and Western blot were used to detect PLCD1 expression in RCC cell lines and normal tissues. Bisulfite treatment, MSP and BGS were utilized to explore the CpG methylation status of PLCD1 promoter. Online databases were analyzed for the association between PLCD1 expression/methylation and patient survival. In vitro experiments including CCK8, colony formation, wound-healing, transwell migration and invasion, immunofluorescence and flow cytometry assays were performed to evaluate tumor cell behavior. Luciferase assay and Western blot were used to examine effect of PLCD1 on WNT/ß-catenin and EGFR-FAK-ERK signaling. RESULTS: We found that PLCD1 was widely expressed in multiple adult normal tissues including kidney, but frequently downregulated or silenced in RCC due to its promoter CpG methylation. Restoration of PLCD1 expression inhibited the viability, migration and induced G2/M cell cycle arrest and apoptosis in RCC cells. PLCD1 restoration led to the inhibition of signaling activation of WNT/ß-catenin and EGFR-FAK-ERK pathways, and the EMT program of RCC cells. CONCLUSIONS: Our results demonstrate that PLCD1 is a potent tumor suppressor frequently inactivated by promoter methylation in RCC and exerts its tumor suppressive functions via suppressing WNT/ß-catenin and EGFR-FAK-ERK signaling. These findings establish PLCD1 as a promising prognostic biomarker and treatment target for RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Adulto , Humanos , Carcinoma de Células Renais/genética , Fosfolipase C delta , beta Catenina/genética , Metilação de DNA , Transdução de Sinais , Neoplasias Renais/genética , Receptores ErbB/genética
11.
Sci Rep ; 13(1): 2332, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759532

RESUMO

Earthworm mucus is rich in nutrients that can initiate the mineralization and humification of organic matter and is of great importance for contaminated soil remediation and sludge reutilization. In this study, six voltage and current combinations were utilized to promote earthworm mucus production (5 V and 6 V at 10, 20 and 30 mA, respectively), to explore the compositional changes of the mucus produced under different electrical stimuli, and to propose the best electrical stimulation group and mucus fraction applicable to soil heavy metal pollution remediation and sludge reutilization. The results showed that the mucus produced by the six electrical stimuli was mainly composed of proteins, amino acids, carbohydrates, fatty acids, and polysaccharides, with small amounts of alcohol, phenol, and ester organic substances. Under different electrical stimuli, each component changed significantly (P < 0.05). pH and conductivity were higher at 6 V 20 mA, total nitrogen and phosphorus contents reached their maximum at 5 V 30 mA, and total potassium at 6 V 10 mA. Protein, amino acids, and carbohydrates were most abundant in the mucus produced at 5 V 10 mA, while trace metal elements reached their lowest values at 5 V 10 mA. Finally, based on principal component analysis and combined with previous studies, it was concluded that the mucus produced at 5 V 10 mA was weakly alkaline, high in amino acids and nutrients and low in trace metal elements, and most suitable for sludge and straw composting experiments, soil remediation and amendment experiments.


Assuntos
Metais Pesados , Oligoquetos , Animais , Esgotos/química , Metais Pesados/química , Solo/química , Muco , Aminoácidos , Carboidratos
12.
Clin Transl Oncol ; 25(3): 578-591, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36315334

RESUMO

Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer (EC) in Asia. It is a malignant digestive tract tumor with abundant gene mutations. Due to the lack of specific diagnostic markers and early cancer screening markers, most patients are diagnosed at an advanced stage. Genetic and epigenetic changes are closely related to the occurrence and development of ESCC. Here, We review the activation of proto-oncogenes into oncogenes through gene mutation and gene amplification in ESCC from a genetic and epigenetic genome perspective, We also discuss the specific regulatory mechanisms through which these oncogenes mainly affect the biological function and occurrence and development of ESCC through specific regulatory mechanisms. In addition, we summarize the clinical application value of these oncogenes is summarized, and it provides a feasible direction for clinical use as potential therapeutic and diagnostic markers.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/metabolismo , Oncogenes , Mutação , Epigênese Genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
13.
Sci Total Environ ; 905: 167027, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37717779

RESUMO

Microbial communities play a vital role in urban river biogeochemical cycles. However, the seasonal variations in microbial community characteristics, particularly phylogenetic group-based community assembly and species coexistence, have not been extensively investigated. Here, we systematically explored the microbiome characteristics and assembly mechanisms of urban rivers in different seasons using 16S rRNA gene sequencing and multivariate statistical methods. The results indicated that the microbial community presented significant temporal heterogeneity in different seasons, and the diversity decreased from spring to winter. The phylogenetic group-based microbial community assembly was governed by dispersal limitation and drift in spring, summer, and autumn but was structured by homogeneous selection in winter. Moreover, the main functions of nitrification, denitrification, and methanol oxidation were susceptible to dispersal limitation and drift processes, whereas sulfate respiration and aromatic compound degradation were controlled by dispersal limitation and homogeneous selection. Network analyses indicated that network complexity decreased and then increased with seasonal changes, while network stability showed the opposite trend, suggesting that higher complexity and diversity reduced community stability. Temperature was determined to be the primary driver of microbial community structure and assembly processes in different seasons based on canonical correspondence analysis and linear regression analysis. In conclusion, seasonal variation drives the dynamics of microbial community assembly and species coexistence patterns in urban rivers. This study provides new insights into the generation and maintenance of microbial community diversity in urban rivers under seasonal change conditions.


Assuntos
Microbiota , Rios , Estações do Ano , Filogenia , RNA Ribossômico 16S/genética
14.
Pathol Res Pract ; 248: 154604, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302276

RESUMO

Long noncoding RNAs (lncRNAs) refer to a class of RNAs greater than 200 nucleotides in length, most of which are considered unable to encode proteins, thus deemed to be junk genes formerly. But with emerging studies about lncRNAs coming out in recent years, it is much more clearly depicted that they can regulate gene expression at different levels, with various mechanisms, thus participating in diverse biological or pathological processes, including complicated tumor-associated pathways. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, the third leading cause of cancer-related mortality worldwide, which has been found to tightly associate with aberrant expression of a variety of lncRNAs regulating tumor proliferation, invasion, drug resistance, and so on, making it a potential novel tumor marker and therapeutic target. In this review, we highlight a few lncRNAs that are closely related to the occurrence and progression of HCC and try to cover their multifarious roles from different layers.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica/genética
15.
J Oncol ; 2023: 6675265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547633

RESUMO

Helicobacter pylori (H. pylori) infection affects cell survival pathways, including apoptosis and proliferation in host cells, and disruption of this balance is the key event in the development of H. pylori-induced gastric cancer (HPGC). H. pylori infection induces alterations in microRNAs expression that may be involved in GC development. Bioinformatic analysis showed that microRNA-21 (miR-21) is significantly upregulated in HPGC. Furthermore, quantitative proteomics and in silico prediction were employed to identify potential targets of miR-21. Following functional enrichment and clustered interaction network analyses, five candidates of miR-21 targets, PDCD4, ASPP2, DAXX, PIK3R1, and MAP3K1, were found across three functional clusters in association with cell death and survival, cellular movement, and cellular growth and proliferation. ASPP2 is inhibited by H. pylori-induced miR-21 overexpression. Moreover, ASPP2 levels are inversely correlated with miR-21 levels in HPGC tumor tissues. Thus, ASPP2 was identified as a miR-21 target in HPGC. Here, we observed that H. pylori-induced ASPP2 suppression enhances resistance to apoptosis in GC cells using apoptosis assays. Using protein interaction network and coimmunoprecipitation assay, we identified CHOP as a direct mediator of the ASPP2 proapoptotic activity in H. pylori-infected GC cells. Mechanistically, ASPP2 suppression promotes p300-mediated CHOP degradation, in turn inhibiting CHOP-mediated transcription of Noxa, Bak, and suppression of Bcl-2 to enact antiapoptosis in the GC cells after H. pylori infection. Clinicopathological analysis revealed correlations between decreased ASPP2 expression and higher HPGC risk and poor prognosis. In summary, the discovery of H. pylori-induced antiapoptosis via miR-21-mediated suppression of ASPP2/CHOP-mediated signaling provides a novel perspective for developing HPGC management and treatment.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38018207

RESUMO

BACKGROUND: Ovarian cancer (OC) is one of the malignant diseases of the reproductive system in elderly women. Aging-related genes (ARGs) were involved in tumor malignancy and cellular senescence, but the specifics of these mechanisms in OC remain unknown. METHODS: ARGs expression and survival data of OC patients were collected from TCGA and CPTAC databases. Subtype classification was used to identify the roles of hub ARGs in OC progression, including function enrichment, immune infiltration, and drug sensitivity. LASSO regression was utilized to confirm the prognosis significance for these hub ARGs. MTT, EdU, Transwell, and wounding healing analysis confirmed the effect of IGFBP5 on the proliferation and migration ability of OC cells. RESULTS: ARGs were ectopically expressed in OC tissues compared to normal ovary tissues. Three molecular subtypes were divided by ARGs for OC patients. There were significant differences in ferroptosis, m6A methylation, prognosis, immune infiltration, angiogenesis, differentiation level, and drug sensitivity among the three groups. LASSO regression indicated that 4 signatures, FOXO4, IGFBP5, OGG1 and TYMS, had important prognosis significance. Moreover, IGFBP5 was significantly correlated with immune infiltration. The hub ARG, IGFBP5, expression was significantly decreased in OC patients compared to normal women. IGFBP5 could also reduce the migration and proliferation ability of OC cells compared to vector and NC groups. CONCLUSION: IGFBP5 was correlated with OC prognosis and associated with OC migration and proliferation. This gene may serve as potential prognostic biomarkers and therapeutic targets for OC patients.

17.
Artigo em Inglês | MEDLINE | ID: mdl-36497597

RESUMO

To study the influence of open-pit coal mining on the surrounding soil environment and human health, this study selected the Hongshaquan coal mine in Xinjiang as the research area and took 31 soil samples from the dump and artificial forest of the mining area. The contents of seven heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn) in the soil were analyzed. The pollution index method, geoaccumulation index method (Igeo), potential ecological risk index method, health ecological risk assessment model and principal component analysis (PCA) were used to evaluate and analyze the heavy metal pollution, potential ecological risk and health ecological risk of the soil. The results showed that compared with the background value of soil in Xinjiang, except for Pb, other heavy metal elements were essentially pollution-free and belonged to the low ecological risk area. The health risk assessment model showed that Pb and As were the main pollution factors of noncarcinogenic risk, and that exposure to Ni, Pb and As had a lower carcinogenic risk. The PCA showed that Cu, Cr, Ni, Pb, As and Zn in the dump were from transportation and industrial activities, Cd was from natural resources, and Cr, Zn, Ni, Cd and Pb were from transportation in the artificial forest. Cu came from industrial sources and As from soil parent material. The dump was more seriously disturbed by human factors than by artificial forests. Our research provides a reference for heavy metal pollution and source analysis caused by mining.


Assuntos
Minas de Carvão , Metais Pesados , Poluentes do Solo , Humanos , Solo , Poluentes do Solo/análise , Cádmio/análise , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , China
18.
Artigo em Inglês | MEDLINE | ID: mdl-36294040

RESUMO

The aim of this study was to assess the total concentration and speciation variation of heavy metals (Pb, Cd, Cu and Zn) during composting and vermicomposting of industrial sludge with different addition rations of rice husk biochar. Results indicated that pH, EC, total phosphorus (TP) and total potassium (TK) were increased and total organic carbon (TOC) and total nitrogen (TN) were decreased during the composting of industrial sludge with biochar compared with the control (sludge without biochar). The addition of earthworm to the biochar-amended sludge further decreased pH and TOC but highly enhanced the EC, TN, TP and TK. Comparatively lower concentrations of total and DTPA-extractable heavy metals were observed in biochar-amended sludge treatments mixed with earthworm in comparison with the biochar-amended sludge treatments without earthworm or the control. Sequential extraction methods demonstrated that vermicomposting of sludge with biochar converted more metals bound with exchangeable, carbonate and organic matter into the residual fraction in comparison with those composting treatments of sludge with biochar. As a result, the combination of rice husk biochar and earthworm accelerated the passivation of heavy metals in industrial sludge during vermicomposting. Rice husk biochar and earthworm can play a positive role in sequestering the metals during the treatment of industrial sludge. This research proposed a potential method to dispose the heavy metals in industrial sludge to transform waste into resource utilization.


Assuntos
Metais Pesados , Oligoquetos , Oryza , Poluentes do Solo , Animais , Esgotos , Poluentes do Solo/análise , Cádmio , Chumbo , Solo , Metais Pesados/análise , Carvão Vegetal , Fósforo , Ácido Pentético , Nitrogênio , Potássio
19.
Stem Cell Res Ther ; 13(1): 187, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525990

RESUMO

BACKGROUND: Adipose-derived stem cells (ASCs) are obtained from a variety of sources in vivo where they present in large quantities. These cells are suitable for use in autologous transplantation and the construction of tissue-engineered adipose tissue. Studies have shown that ASCs differentiation is in a high degree of heterogeneity, yet the molecular basis including key regulators of differentiation remains to clarify. METHODS: We performed single-cell RNA sequencing and bioinformatics analysis on both undifferentiated (ASC-GM group) and adipogenically differentiated human ASCs (ASC-AD group, ASCs were cultured in adipogenic inducing medium for 1 week). And then, we verified the results of serum amyloid A1 (SAA1) with western blotting, immunofluorescence staining, oil red O staining. After these experiments, we down-regulated the expression of serum amyloid A1 (SAA1) gene to verify the adipogenic differentiation ability of ASCs. RESULTS: In single-cell RNA sequence analyzing, we obtained 4415 cells in the ASC-GM group and 4634 cells in the ASC-AD group. The integrated sample cells could be divided into 11 subgroups (0-10 cluster). The cells in cluster 0, 2, 5 were came from ASC-GM group and the cells in cluster 1, 3, 7 came from ASC-AD group. The cells of cluster 4 and 6 came from both ASC-GM and ASC-AD groups. Fatty acid binding protein 4, fatty acid binding protein 5, complement factor D, fatty acid desaturase 1, and insulin like growth factor binding protein 5 were high expressed in category 1 and 7. Regulation of inflammatory response is the rank 1 biological processes. And cellular responses to external stimuli, negative regulation of defense response and acute inflammatory response are included in top 20 biological processes. Based on the MCODE results, we found that SAA1, C-C Motif Chemokine Ligand 5 (CCL5), and Annexin A1 (ANXA1) significantly highly expressed during adipogenic differentiation. Western blot and immunofluorescent staining results showed that SAA1 increased during adipogenesis. And the area of ORO positive staining in siSAA1 cells was significantly lower than in the siControl (negative control) cells. CONCLUSIONS: Our results also indicated that our adipogenic induction was successful, and there was great heterogeneity in the adipogenic differentiation of ASCs. SAA1 with the regulation of inflammatory response were involved in adipogenesis of ASCs based on single-cell RNA sequencing analysis. The data obtained will help to elucidate the intrinsic mechanism of heterogeneity in the differentiation process of stem cells, thus, guiding the regulation of self-renewal and differentiation of adult stem cells.


Assuntos
Adipogenia , Tecido Adiposo , Adipogenia/genética , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a Ácido Graxo/genética , Humanos , Análise de Sequência de RNA , Células-Tronco
20.
Front Oncol ; 12: 1021558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276071

RESUMO

Background: Ovarian serous cystadenocarcinoma (OSC), a common gynecologic tumor, is characterized by high mortality worldwide. Bromodomain (BRD)-containing proteins are a series of evolutionarily conserved proteins that bind to acetylated Lys residues of histones to regulate the transcription of multiple genes. The ectopic expression of BRDs is often observed in multiple cancer types, but the role of BRDs in OSC is still unclear. Methods: We performed the differential expression, GO enrichment, GSEA, immune infiltration, risk model, subtype classification, stemness feature, DNA alteration, and epigenetic modification analysis for these BRDs based on multiple public databases. Results: Most BRDs were dysregulated in OSC tissues compared to normal ovary tissues. These BRDs were positively correlated with each other in OSC patients. Gene alteration and epigenetic modification were significant for the dysregulation of BRDs in OSC patients. GO enrichment suggested that BRDs played key roles in histone acetylation, viral carcinogenesis, and transcription coactivator activity. Two molecular subtypes were classified by BRDs for OSC, which were significantly correlated with stemness features, m6A methylation, ferroptosis, drug sensitivity, and immune infiltration. The risk model constructed by LASSO regression with BRDs performed moderately well in prognostic predictions for OSC patients. Moreover, BRPF1 plays a significant role in these BRDs for the development and progression of OSC patients. Conclusion: BRDs are potential targets and biomarkers for OSC patients, especially BRPF1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA