Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140841, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040250

RESUMO

In this work, the magnetic nanocomposite Fe@SiC was prepared by a hydrothermal method and determined by SEM, XRD, XPS, FTIR and VNA. Fe3O4 particles were loaded onto SiC with great success, and the synthesized composites had favorable microwave absorption properties. Fe@SiC was used to activate persulfate in a microwave field for the degradation of BDE209 in soil. Specifically, the synergistic interaction between microwaves and Fe@SiC showed excellent catalytic performance in activating PS to degrade BDE209 (90.1% BDE209 degradation in 15 min). The presence of •OH, O2•- and 1O2 was demonstrated based on quench trapping and EPR experiments. LC‒MS was applied to determine the intermediates and propose the possible degradation pathway for BDE209 in the MW/Fe@SiC/PS system, and it was found that BDE209 produced almost no lower brominated diphenyl ethers. Therefore, the toxicity of BDE209 was found to be reduced using toxicity assessment software. Overall, this work provides an effective approach for the degradation of BDE209 in environmental remediation.


Assuntos
Ferro , Micro-Ondas , Éteres Difenil Halogenados
2.
J Hazard Mater ; 437: 129392, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35732109

RESUMO

Since the discovery of the potential hazards of ciprofloxacin (CIP) to the ecosystem and human health, there has been an urgent need to develop effective technologies to solve the severe issue. In this work, the nanozero-valent iron graphitized carbon matrix (xFe@CS-Tm) were prepared via a hydrothermal method to activate peroxydisulfate (PDS) for degradation of CIP. Specifically, 0.5Fe@CS-T7 exhibited the excellent catalytic performance for PDS activation to degrade CIP. Moreover, the catalyst exhibited vigorous interference resistance at various pH values, in the presence of various inorganic anions and under humic acid conditions. The characterization results demonstrated that Fe was successfully embedded on the carbon matrix and became the active sites to promote ROS production. It is demonstrated that O2•- was the main active species rather than •OH and SO4•-, based on quench trapping, EPR experiments and steady state concentrations calculations. The possible pathways of CIP degradation were proposed using LC-MS results and density functional theory. The outcomes of the toxicity estimation software tool found that the toxicity of CIP was reduced. This study not only investigated a novel methodology for the degradation of antibiotic wastewater but also provides a feasible pathway for carbon-neutral wastewater treatment.


Assuntos
Ciprofloxacina , Purificação da Água , Carbono , Catálise , Ciprofloxacina/química , Ciprofloxacina/toxicidade , Ecossistema , Humanos , Ferro/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA