Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Am Chem Soc ; 146(12): 7936-7941, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477710

RESUMO

Photochemical generation of alkyl radicals from haloalkanes often requires strong energy input from ultraviolet light or a strong photoreductant. Haloalkanes can alternatively be activated with nitrogen-based nucleophiles through a sequential SN2 reaction and single-electron reduction to access alkyl radicals, but these two reaction steps have opposite steric requirements on the nucleophiles. Herein, we report the design of Hf12 metal-organic layers (MOLs) with iridium-based photosensitizer bridging ligands and secondary-building-unit-supported pyridines for photocatalytic alkyl radical generation from haloalkanes. By bringing the photosensitizer and pyridine pairs in proximity, the MOL catalysts allowed facile access to the pyridinium salts from SN2 reactions between haloalkanes and pyridines and at the same time enhanced electron transfer from excited photosensitizers to pyridinium salts to facilitate alkyl radical generation. Consequentially, the MOLs efficiently catalyzed Heck-type cross-coupling reactions between haloalkanes and olefinic substrates to generate functionalized alkenes. The MOLs showed 4.6 times higher catalytic efficiency than the homogeneous counterparts and were recycled and reused without a loss of catalytic activity.

2.
J Am Chem Soc ; 146(1): 849-857, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134050

RESUMO

Phthalocyanine photosensitizers (PSs) have shown promise in fluorescence imaging and photodynamic therapy (PDT) of malignant tumors, but their practical application is limited by the aggregation-induced quenching (AIQ) and inherent photobleaching of PSs. Herein, we report the synthesis of a two-dimensional nanoscale covalent organic framework (nCOF) with staggered (AB) stacking of zinc-phthalocyanines (ZnPc), ZnPc-PI, for fluorescence imaging and mitochondria-targeted PDT. ZnPc-PI isolates and confines ZnPc PSs in the rigid nCOF to reduce AIQ, improve photostability, enhance cellular uptake, and increase the level of reactive oxygen species (ROS) generation via mitochondrial targeting. ZnPc-PI shows efficient tumor accumulation, which allowed precise tumor imaging and nanoparticle tracking. With high cellular uptake and tumor accumulation, intrinsic mitochondrial targeting, and enhanced ROS generation, ZnPc-PI exhibits potent PDT efficacy with >95% tumor growth inhibition on two murine colon cancer models without causing side effects.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Compostos Organometálicos , Fotoquimioterapia , Compostos de Zinco , Camundongos , Humanos , Animais , Fotoquimioterapia/métodos , Estruturas Metalorgânicas/uso terapêutico , Espécies Reativas de Oxigênio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Isoindóis , Neoplasias/tratamento farmacológico , Compostos Organometálicos/farmacologia , Compostos Organometálicos/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Mitocôndrias , Linhagem Celular Tumoral
3.
J Am Chem Soc ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837955

RESUMO

Covalent organic frameworks (COFs) have been explored for photodynamic therapy (PDT) of cancer, but their antitumor efficacy is limited by excited state quenching and low reactive oxygen species generation efficiency. Herein, we report a simultaneous protonation and metalation strategy to significantly enhance the PDT efficacy of a nanoscale two-dimensional imine-linked porphyrin-COF. The neutral and unmetalated porphyrin-COF (Ptp) and the protonated and metalated porphyrin-COF (Ptp-Fe) were synthesized via imine condensation between 5,10,15,20-tetrakis(4-aminophenyl)porphyrin and terephthalaldehyde in the absence and presence of ferric chloride, respectively. The presence of ferric chloride generated both doubly protonated and Fe3+-coordinated porphyrin units, which red-shifted and increased the Q-band absorption and disrupted exciton migration to prevent excited state quenching, respectively. Under light irradiation, rapid energy transfer from protonated porphyrins to Fe3+-coordinated porphyrins in Ptp-Fe enabled 1O2 and hydroxyl radical generation via type II and type I PDT processes. Ptp-Fe also catalyzed the conversion of hydrogen peroxide to hydroxy radical through a photoenhanced Fenton-like reaction under slightly acidic conditions and light illumination. As a result, Ptp-Fe-mediated PDT exhibited much higher cytotoxicity than Ptp-mediated PDT on CT26 and 4T1 cancer cells. Ptp-Fe-mediated PDT afforded potent antitumor efficacy in subcutaneous CT26 murine colon cancer and orthotopic 4T1 murine triple-negative breast tumors and prevented metastasis of 4T1 breast cancer to the lungs. This work underscores the role of fine-tuning the molecular structures of COFs in significantly enhancing their PDT efficacy.

4.
Anal Chem ; 96(15): 5878-5886, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38560891

RESUMO

Gas chromatography-mass spectrometry (GC-MS) is one of the most important instruments for analyzing volatile organic compounds. However, the complexity of real samples and the limitations of chromatographic separation capabilities lead to coeluting compounds without ideal separation. In this study, a Transformer-based automatic resolution method (GCMSFormer) is proposed to resolve mass spectra from GC-MS peaks in an end-to-end manner, predicting the mass spectra of components directly from the raw overlapping peaks data. Furthermore, orthogonal projection resolution (OPR) was integrated into GCMSFormer to resolve minor components. The GCMSFormer model was trained, validated, and tested using 100,000 augmented data. It achieves 99.88% of the bilingual evaluation understudy (BLEU) value on the test set, significantly higher than the 97.68% BLEU value of the baseline sequence-to-sequence model long short-term memory (LSTM). GCMSFormer was also compared with two nondeep learning resolution tools (MZmine and AMDIS) and two deep learning resolution tools (PARAFAC2 with DL and MSHub/GNPS) on a real plant essential oil GC-MS data set. Their resolution results were compared on evaluation metrics, including the number of compounds resolved, mass spectral match score, correlation coefficient, explained variance, and resolution speed. The results demonstrate that GCMSFormer has better resolution performance, higher automation, and faster resolution speed. In summary, GCMSFormer is an end-to-end, fast, fully automatic, and accurate method for analyzing GC-MS data of complex samples.

5.
Phys Rev Lett ; 132(15): 152502, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682998

RESUMO

^{134}Xe is a candidate isotope for neutrinoless double beta decay (0νßß) search. In addition, the two-neutrino case (2νßß) allowed by the standard model of particle physics has not yet been observed. With the 656-kg natural xenon in the fiducial volume of the PandaX-4T detector, which contains 10.4% of ^{134}Xe, and its initial 94.9-day exposure, we have established the most stringent constraints on 2νßß and 0νßß of ^{134}Xe half-lives, with limits of 2.8×10^{22} yr and 3.0×10^{23} yr at 90% confidence level, respectively. The 2νßß (0νßß) limit surpasses the previously reported best result by a factor of 32 (2.7), highlighting the potential of large monolithic natural xenon detectors for double beta decay searches.

6.
Ecotoxicol Environ Saf ; 269: 115905, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171230

RESUMO

Coal fly ash (CFA), a byproduct of coal combustion, is a hazardous industrial solid waste. Its excessive global production, coupled with improper disposal practices, insufficient utilization and limited awareness of its inherent hazards, poses a significant threat to both ecological environment and human health. Based on the physicochemical properties of CFA and its leachates, we elucidate the forms of CFA and potential pathways for its entry into the human body, as well as the leaching behavior, maximum tolerance and biological half-life of toxic elements present in CFA. Furthermore, we provide an overview of current strategies and methods for mitigating the leaching of these harmful elements from CFA. Moreover, we systemically summarize toxic effect of CFA on organisms across various tiers of complexity, analyze epidemiological findings concerning the human health implications resulting from CFA exposure, and delve into the biotoxicological mechanisms of CFA and its leachates at cellular and molecular levels. This review aims to enhance understanding of the potential toxicity of CFA, thereby promoting increased public awareness regarding the disposal and management of this industrial waste.


Assuntos
Cinza de Carvão , Ecossistema , Humanos , Cinza de Carvão/análise , Carvão Mineral , Meio Ambiente , Resíduos Industriais/efeitos adversos
7.
Angew Chem Int Ed Engl ; : e202409387, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38925605

RESUMO

Phosphine-ligated transition metal complexes play a pivotal role in modern catalysis, but our understanding of the impact of ligand counts on the catalysis performance of the metal center is limited. Here we report the synthesis of a low-coordinate mono(phosphine)-Rh catalyst on a metal-organic layer (MOL), P-MOL • Rh, and its applications in the hydrogenation of mono-, di-, and tri-substituted alkenes as well as aryl nitriles with turnover numbers (TONs) of up to 390000. Mechanistic investigations and density functional theory calculations revealed the lowering of reaction energy barriers by the low steric hindrance of site-isolated mono(phosphine)-Rh sites on the MOL to provide superior catalytic activity over homogeneous Rh catalysts. The MOL also prevents catalyst deactivation to enable recycle and reuse of P-MOL • Rh in catalytic hydrogenation reactions.

8.
Angew Chem Int Ed Engl ; : e202410241, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924645

RESUMO

Abnormal cancer metabolism causes hypoxic and immunosuppressive tumor microenvironment (TME), which limits the antitumor efficacy of photodynamic therapy (PDT). Herein, we report a photosensitizing nanoscale metal-organic layer (MOL) with anchored 3-bromopyruvate (BrP), BrP@MOL, as a metabolic reprogramming agent to enhance PDT and antitumor immunity. BrP@MOL inhibited mitochondrial respiration and glycolysis to oxygenate tumors and reduce lactate production. This metabolic reprogramming enhanced reactive oxygen species generation during PDT and reshaped the immunosuppressive TME to enhance antitumor immunity. BrP@MOL-mediated PDT inhibited tumor growth by >90 % with 40 % of mice being tumor-free, rejected tumor re-challenge, and prevented lung metastasis. Further combination with immune checkpoint blockade potently regressed the tumors with >98 % tumor inhibition and 80 % of mice being tumor-free.

9.
Chem Sci ; 15(13): 4920-4925, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38550707

RESUMO

Photocatalytic direct hydrogen atom transfer (d-HAT) is a synthetically important strategy to convert C-H bonds to useful C-X bonds. Herein we report the synthesis of an anthraquinone-based two-dimensional covalent organic framework, DAAQ-COF, as a recyclable d-HAT photocatalyst for C-H functionalization. Powder X-ray diffraction, N2 sorption isotherms, solid-state NMR spectra, infrared spectra, and thermogravimetric analysis characterized DAAQ-COF as a crystalline, porous COF with a stable ketoenamine linkage and strong absorption in the visible region. Under visible light irradiation, DAAQ-COF is photo-excited to cleave C(sp3)-H or C(sp2)-H bonds via HAT to generate reactive carbon radicals, which add to different radical acceptors to achieve C-N or C-C coupling reactions. DAAQ-COF is easily recovered from the reaction mixture via centrifugation or filtration and used in six consecutive reaction runs without any decrease in catalytic efficiency. The ease of catalyst separation allows sequential conversion of the C-N coupling intermediate to synthetically useful amide, ester, or thioester products. Photophysical and isotope labelling experiments support the d-HAT mechanism of DAAQ-COF-catalyzed C-H bond functionalization.

10.
Artigo em Zh | MEDLINE | ID: mdl-38433690

RESUMO

Objective:Exploring the electrophysiological changes of auditory rehabilitation in young children with hearing impairment, providing more methods for early assessment and intervention. Methods:Twenty children aged 2-4 were enrolled, with moderate hearing loss and no other abnormalities in the ears. Divide them into group 1 with normal hearing, group 2 with abnormal hearing, group 3 with abnormal hearing receiving hearing aid intervention for one year, and group 4 with abnormal hearing receiving hearing aid and language training rehabilitation for one year. The SmartEP auditory evoked potential instrument was used to detect speech induced ABR and conduct screening for 'Standards and Evaluating Hearing and Language Abilities of Children with Hearing Impairment in 80 enrolled children after rehabilitation training, and the latency、amplitude of speech induced ABR waveform and evaluation scale scores for each group after rehabilitation intervention were compared. Results:Compared with the normal group, the latency of each wave in the other three groups was prolonged. The differences in each wave between Group 2 and Group 3 were statistically significant, while the differences in D and F waves between Group 3 and Group 4 were statistically significant. Compared with the normal group, the maximum amplitude at F0 decreased in the other three groups, and the differences in maximum amplitude between Group 2 and Group 3, Group 2 and Group 4, and Group 3 and Group 4 were statistically significant. Compared with the normal group, the scores of the auditory language assessment scale in the hearing intervention group and the hearing aid plus language training group were significantly higher than those in the abnormal group in terms of recognition rate. The recognition rates of hearing impaired children with language training foundation are similar to those of the normal group of children. Conclusion:Auditory rehabilitation can alter the electrophysiological aspects of hearing and serve as a basis for early assessment and intervention in young children.


Assuntos
Surdez , Fala , Criança , Humanos , Pré-Escolar , Audição , Cognição , Potenciais Evocados Auditivos
11.
Natl Sci Rev ; 11(7): nwae167, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38887543

RESUMO

Radiotherapy is widely used for cancer treatment, but its clinical utility is limited by radioresistance and its inability to target metastases. Nanoscale metal-organic frameworks (MOFs) have shown promise as high-Z nanoradiosensitizers to enhance radiotherapy and induce immunostimulatory regulation of the tumor microenvironment. We hypothesized that MOFs could deliver small-molecule therapeutics to synergize with radiotherapy for enhanced antitumor efficacy. Herein, we develop a robust nanoradiosensitizer, GA-MOF, by conjugating a STING agonist, 2',3'-cyclic guanosine monophosphate-adenosine monophosphate (GA), on MOFs for synergistic radiosensitization and STING activation. GA-MOF demonstrated strong anticancer efficacy by forming immune-cell-rich nodules (artificial leukocytoid structures) and transforming them into immunostimulatory hotspots with radiotherapy. Further combination with an immune checkpoint blockade suppressed distant tumors through systemic immune activation. Our work not only demonstrates the potent radiosensitization of GA-MOF, but also provides detailed mechanisms regarding MOF distribution, immune regulatory pathways and long-term immune effects.

12.
Research (Wash D C) ; 2022: 9798721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38645679

RESUMO

Precise measurement of two-neutrino double beta decay (DBD) half-life is an important step for the searches of Majorana neutrinos with neutrinoless double beta decay. We report the measurement of DBD half-life of 136Xe using the PandaX-4T dual-phase Time Projection Chamber (TPC) with 3.7-tonne natural xenon and the first 94.9-day physics data release. The background model in the fiducial volume is well constrained in situ by events in the outer active region. With a 136Xe exposure of 15.5 kg-year, we establish the half-life as 2.27 ± 0.03(stat.) ± 0.10(syst.) × 1021 years. This is the first DBD half-life measurement with natural xenon and demonstrates the physics capability of a large-scale liquid xenon TPC in the field of rare event searches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA