Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(20): 9515-9521, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37830516

RESUMO

Two-dimensional (2D) van der Waals single crystals with long-range magnetic order are the precondition and urgent task for developing a 2D spintronics device. In contrast to graphene and transition metal dichalcogenides, the study of 2D single-crystal metal oxides with intrinsic ferromagnetic properties remains a huge challenge. Here, we report a large-size trigonal single-crystal rhodium oxide (SC-Tri-RhO2), with crystal parameters of a = b = 3.074 Å, c = 6.116 Å, and a space group of P3̅m1 (164), exhibiting strong ferromagnetism (FM) at a rather high temperature. Furthermore, theoretical calculations suggest that the ferromagnetism in SC-Tri-RhO2 originates from spin splitting near the Fermi level, and the total magnetic moment is contributed mainly by the Rh atom.

2.
ACS Nano ; 18(6): 5029-5039, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286031

RESUMO

Clarifying the structure-reactivity relationship of non-noble-metal electrocatalysts is one of the decisive factors for the practical application of water electrolysis. In this field, the anodic oxygen evolution reaction (OER) with a sluggish kinetic process has become a huge challenge for large-scale production of high-purity hydrogen. Here we synthesize a layered quasi-nevskite metastable-phase cobalt oxide (LQNMP-Co2O3) nanosheet via a simple molten alkali synthesis strategy. The unit-cell parameters of LQNMP-Co2O3 are determined to be a = b = 2.81 Šand c = 6.89 Šwith a space group of P3̅m1 (No. 164). The electrochemical results show that the LQNMP-Co2O3 electrocatalyst enables delivering an ultralow overpotential of 266 mV at a current density of 10 mA cmgeo-2 with excellent durability. The operando XANES and EXAFS analyses clearly reveal the origin of the OER activity and the electrochemical stability of the LQNMP-Co2O3 electrocatalyst. Density functional theory (DFT) simulations show that the energy barrier of the rate-determining step (RDS) (from *O to *OOH) is significantly reduced on the LQNMP-Co2O3 electrocatalyst by comparing with simulated monolayered CoO2 (M-CoO2).

3.
Nat Commun ; 14(1): 1248, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871002

RESUMO

Metastable metal oxides with ribbon morphologies have promising applications for energy conversion catalysis, however they are largely restricted by their limited synthesis methods. In this study, a monoclinic phase iridium oxide nanoribbon with a space group of C2/m is successfully obtained, which is distinct from rutile iridium oxide with a stable tetragonal phase (P42/mnm). A molten-alkali mechanochemical method provides a unique strategy for achieving this layered nanoribbon structure via a conversion from a monoclinic phase K0.25IrO2 (I2/m (12)) precursor. The formation mechanism of IrO2 nanoribbon is clearly revealed, with its further conversion to IrO2 nanosheet with a trigonal phase. When applied as an electrocatalyst for the oxygen evolution reaction in acidic condition, the intrinsic catalytic activity of IrO2 nanoribbon is higher than that of tetragonal phase IrO2 due to the low d band centre of Ir in this special monoclinic phase structure, as confirmed by density functional theory calculations.

4.
Nat Commun ; 13(1): 5828, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192414

RESUMO

Designing well-ordered nanocrystal arrays with subnanometre distances can provide promising materials for future nanoscale applications. However, the fabrication of aligned arrays with controllable accuracy in the subnanometre range with conventional lithography, template or self-assembly strategies faces many challenges. Here, we report a two-dimensional layered metastable oxide, trigonal phase rhodium oxide (space group, P-3m1 (164)), which provides a platform from which to construct well-ordered face-centred cubic rhodium nanocrystal arrays in a hexagonal pattern with an intersurface distance of only 0.5 nm. The coupling of the well-ordered rhodium array and metastable substrate in this catalyst triggers and improves hydrogen spillover, enhancing the acidic hydrogen evolution for H2 production, which is essential for various clean energy-related devices. The catalyst achieves a low overpotential of only 9.8 mV at a current density of -10 mA cm-2, a low Tafel slope of 24.0 mV dec-1, and high stability under a high potential (vs. RHE) of -0.4 V (current density of ~750 mA cm-2). This work highlights the important role of metastable materials in the design of advanced materials to achieve high-performance catalysis.

5.
Nat Commun ; 12(1): 6007, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650084

RESUMO

Exploring new materials is essential in the field of material science. Especially, searching for optimal materials with utmost atomic utilization, ideal activities and desirable stability for catalytic applications requires smart design of materials' structures. Herein, we report iridium metallene oxide: 1 T phase-iridium dioxide (IrO2) by a synthetic strategy combining mechanochemistry and thermal treatment in a strong alkaline medium. This material demonstrates high activity for oxygen evolution reaction with a low overpotential of 197 millivolt in acidic electrolyte at 10 milliamperes per geometric square centimeter (mA cmgeo-2). Together, it achieves high turnover frequencies of 4.2 sUPD-1 (3.0 sBET-1) at 1.50 V vs. reversible hydrogen electrode. Furthermore, 1T-IrO2 also shows little degradation after 126 hours chronopotentiometry measurement under the high current density of 250 mA cmgeo-2 in proton exchange membrane device. Theoretical calculations reveal that the active site of Ir in 1T-IrO2 provides an optimal free energy uphill in *OH formation, leading to the enhanced performance. The discovery of this 1T-metallene oxide material will provide new opportunities for catalysis and other applications.

6.
iScience ; 23(1): 100806, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31926428

RESUMO

The efficient conversion of carbon dioxide (CO2) into useful chemicals has important practical significance for environmental protection. Until now, direct fixation of atmospheric CO2 needs first extraction from the atmosphere, an energy-intensive process. Silicon (or Si-H surface), Earth-abundant, low-cost and non-toxic, is a promising material for heterogeneous CO2 chemical fixation. Here we report one-step fixing of CO2 directly from the atmosphere to a paraformaldehyde-like polymer by Si-H surface at room temperature. With the assistance of HF, commercial silicon powder was used as a heterogeneous reducing agent, for converting gaseous CO2 to a polymer of fluorine substituted polyoxymethylene and hydroxyl substituted polyoxymethylene alternating copolymer (F-POM). Making use of the Si-H surface toward the fixation of atmospheric gaseous CO2 is a conceptually distinct and commercially interesting strategy for making useful chemicals and environmental protection.

7.
J Colloid Interface Sci ; 557: 729-736, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563605

RESUMO

Design of catalysts with advanced structures has been extensively studied. Mesocrystal structure with the uniform crystal orientation shows special properties in electrocatalysis. Herein, PtRu mesocrystal was synthesized on F doped graphene by wet chemical method. In this reaction system, silicon nanowires and hydrofluoric acid were used to form Si - H bonds, which served as reducing agents to reduce Pt and Ru ions and grow PtRu particles on reduced graphene oxide (rGO). The electrochemical results showed that the PtRu/rGO catalyst had a favourable electrocatalytic performance on methanol oxidation reaction. The corresponding mass activity reached 739 mA mg-1Pt, which was 2.23 times as large as 20% commercial platinum carbon (Pt/C, 332 mA mg-1Pt). Its stability and toxicity resistance were also much better than those of commercial Pt/C, showing a great prospect in practice applications. Furthermore, the forming mechanism of PtRu mesocrystal is discussed, which has general implications for the design of superstructure catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA