Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(7)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36332230

RESUMO

Hierarchical domain structures associated with oxygen octahedra tilting patterns were observed in lead-free (Bi1/2Na1/2)TiO3ceramics using aberration-corrected high-resolution transmission electron microscopy (HRTEM). Three types of domains are induced by distinct mechanisms: the 'orientation-domain' is induced at micrometer scale formed by different tilting orientations of the oxygen octahedra, the 'meso-chemical-domain' occurs at a few tens of nanometer scale by chemical composition variation on the A-site in the ABO3perovskite structure, and the 'nano-cluster-region' runs across several unit-cells with apparent A-site cation segregation with oxygen vacancies clustering around Na cations. Based on HRTEM amplitude contrast imaging (ACI), the correlation between the oxygen octahedral tilting pattern and compositional non-stoichiometry was established. The role of the hierarchical domain structure associated with the tilting patterns of the oxygen octahedra on the ferroelectric behavior of (Bi1/2Na1/2)TiO3is also discussed.

2.
Phys Chem Chem Phys ; 24(7): 4125-4130, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35113112

RESUMO

Advancing the atomistic level understanding of aqueous dissolution of multicomponent materials is essential. We combined ReaxFF and experiments to investigate the dissolution at the Li1+xAlxTi2-x(PO4)3-water interface. We demonstrate that surface dissolution is a sequentially dynamic process. The phosphate dissolution destabilizes the NASICON structure, which triggers a titanium-rich secondary phase formation.

3.
Nano Lett ; 21(8): 3451-3457, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33852297

RESUMO

Molten hydroxides, often used for crystal growth and nanoparticle synthesis, have recently been applied for the single step densification of several inorganic materials under moderate uniaxial pressures and 1000 °C below their usual sintering temperatures. The latter approach, termed cold sintering process (CSP), is a mechanochemically driven process that enables the densification of inorganic materials through a dissolution-precipitation creep mechanism. In this study, we report the main densification mechanisms of BaTiO3 in a NaOH-KOH eutectic mixture. A chemical insight at the atomistic level, investigated by ReaxFF molecular dynamics simulations, offers plausible ionic complex formation scenarios and reactions at the BaTiO3/molten hydroxide interface, enabling the dissolution-precipitation reactions and the subsequent cold sintering of BaTiO3.

4.
Inorg Chem ; 60(17): 13453-13460, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34403579

RESUMO

Cold sintering (CS) is a chemically driven densification technique enabling a substantial decrease in the sintering temperature of oxides, by several hundreds of degrees Celsius. Although the densification process in CS is known to be mainly driven by pressure solution creep, additional fundamental aspects driving the interfacial chemistry reactions are still a subject of debate. Herein, we focus on the aspect of speciation in the densification process. The densification of zinc oxide (ZnO) by CS using zinc acetylacetonate hydrate (Zn(acac)2·xH2O), a versatile ligand often used as a precursor for ZnO synthesis in wet chemistry, is reported. The successful densification of ZnO using H2O and Zn(acac)2·xH2O confirms the importance of speciation in CS, as ZnO has a very low solubility in pure H2O. The evolution of the system at different stages of sintering and the role of the Zn(acac)2·xH2O species were evaluated.

5.
Phys Rev Lett ; 123(21): 217602, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809133

RESUMO

Complex polar structures of incommensurate modulations (ICMs) are revealed in chemically modified PbZrO_{3} perovskite antiferroelectrics using advanced transmission electron microscopy techniques. The Pb-cation displacements, previously assumed to arrange in a fully compensated antiparallel fashion, are found to be either antiparallel, but with different magnitudes, or in a nearly orthogonal arrangement in adjacent stripes in the ICMs. Ab initio calculations corroborate the low-energy state of these arrangements. Our discovery corrects the atomic understanding of ICMs in PbZrO_{3}-based perovskite antiferroelectrics.

6.
ACS Appl Mater Interfaces ; 13(40): 48071-48087, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34581562

RESUMO

Electrodes for solid-state batteries require the conduction of both ions and electrons for extraction of the energy from the active material. In this study, we apply cold sintering to a model composite cathode system to study how low-temperature densification enables a degree of control over the mixed conducting properties of such systems. The model system contains the NASICON-structured Na3V2(PO4)3 (NVP) active material, NASICON-structured solid electrolyte (Na3Zr2Si2PO12, NZSP), and electron-conducting carbon nanofiber (CNF). Pellets of varying weight fractions of components were cold-sintered to greater than 90% of the theoretical density at 350-375 °C, a 360 MPa uniaxial pressure, and with a 3 h dwell time using sodium hydroxide as the transient sintering aid. The bulk conductivity of the diphasic composites was measured with impedance spectroscopy; the total conductivities of the composites are increased from 3.8 × 10-8 S·cm-1 (pure NVP) to 5.81 × 10-6 S·cm-1 (60 wt % NZSP) and 1.31 × 10-5 S·cm-1 (5 wt % CNF). Complimentary direct current polarization experiments demonstrate a rational modulation in transference number (τ) of the composites; τ of pure NVP = 0.966, 60 wt % NZSP = 0.995, and 5 wt % CNF = 0.116. Finally, all three materials are combined into triphasic composites to serve as solid-state cathodes in a half-cell configuration with a liquid electrolyte. Electrochemical activity of the active material is maintained, and the capacity/energy density is comparable to prior work.

7.
Pain Ther ; 10(2): 927-939, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34278548

RESUMO

Stroke is a leading cause of death worldwide, and about a quarter of stroke patients are dead within 1 month. The prognosis is even worse for those with hemorrhagic stroke because the 1-month mortality approaches 50%. Besides, most patients who survive experience complications such as nausea, vomiting, and chronic pain. These adverse experiences, especially the existence of chronic pain, can lead to a decline in the patient's quality of life. In order to improve the treatment and prognosis of hemorrhagic stroke, there is an urgent need to understand its pathophysiological mechanism as well as the chronic pain it induces. This paper reviews studies of the molecular mechanisms of hemorrhagic stroke, especially the activation of microglia and the relationship between microglia and pain after stroke, which could shed new light on hemorrhagic stroke treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA