Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.062
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(5): 809-813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605111

RESUMO

Neuroscience is advancing standardization and tool development to support rigor and transparency. Consequently, data pipeline complexity has increased, hindering FAIR (findable, accessible, interoperable and reusable) access. brainlife.io was developed to democratize neuroimaging research. The platform provides data standardization, management, visualization and processing and automatically tracks the provenance history of thousands of data objects. Here, brainlife.io is described and evaluated for validity, reliability, reproducibility, replicability and scientific utility using four data modalities and 3,200 participants.


Assuntos
Computação em Nuvem , Neurociências , Neurociências/métodos , Humanos , Neuroimagem/métodos , Reprodutibilidade dos Testes , Software , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem
2.
Proc Natl Acad Sci U S A ; 120(17): e2218617120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068254

RESUMO

We have developed workflows to align 3D magnetic resonance histology (MRH) of the mouse brain with light sheet microscopy (LSM) and 3D delineations of the same specimen. We start with MRH of the brain in the skull with gradient echo and diffusion tensor imaging (DTI) at 15 µm isotropic resolution which is ~ 1,000 times higher than that of most preclinical MRI. Connectomes are generated with superresolution tract density images of ~5 µm. Brains are cleared, stained for selected proteins, and imaged by LSM at 1.8 µm/pixel. LSM data are registered into the reference MRH space with labels derived from the ABA common coordinate framework. The result is a high-dimensional integrated volume with registration (HiDiver) with alignment precision better than 50 µm. Throughput is sufficiently high that HiDiver is being used in quantitative studies of the impact of gene variants and aging on mouse brain cytoarchitecture and connectomics.


Assuntos
Imagem de Tensor de Difusão , Microscopia , Camundongos , Animais , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos
3.
PLoS Pathog ; 19(4): e1011316, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37058447

RESUMO

The presence of human cytomegalovirus (HCMV) in glioblastoma (GBM) and improved outcomes of GBM patients receiving therapies targeting the virus have implicated HCMV in GBM progression. However, a unifying mechanism that accounts for the contribution of HCMV to the malignant phenotype of GBM remains incompletely defined. Here we have identified SOX2, a marker of glioma stem cells (GSCs), as a key determinant of HCMV gene expression in gliomas. Our studies demonstrated that SOX2 downregulated promyelocytic leukemia (PML) and Sp100 and consequently facilitated viral gene expression by decreasing the amount of PML nuclear bodies in HCMV-infected glioma cells. Conversely, the expression of PML antagonized the effects of SOX2 on HCMV gene expression. Furthermore, this regulation of SOX2 on HCMV infection was demonstrated in a neurosphere assay of GSCs and in a murine xenograft model utilizing xenografts from patient-derived glioma tissue. In both cases, SOX2 overexpression facilitated the growth of neurospheres and xenografts implanted in immunodeficient mice. Lastly, the expression of SOX2 and HCMV immediate early 1 (IE1) protein could be correlated in tissues from glioma patients, and interestingly, elevated levels of SOX2 and IE1 were predictive of a worse clinical outcome. These studies argue that HCMV gene expression in gliomas is regulated by SOX2 through its regulation of PML expression and that targeting molecules in this SOX2-PML pathway could identify therapies for glioma treatment.


Assuntos
Glioma , Proteínas Imediatamente Precoces , Animais , Humanos , Camundongos , Citomegalovirus/fisiologia , Regulação para Baixo , Expressão Gênica , Glioma/genética , Glioma/patologia , Proteínas Imediatamente Precoces/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Brain ; 147(9): 3083-3098, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38808482

RESUMO

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomofunctional mechanisms governing human behaviour, in addition to the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. Although the ventral tegmental area has been targeted successfully with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region is not fully understood. Here, using fibre microdissections in human cadaveric hemispheres, population-based high-definition fibre tractography and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches and aggressive behaviours.


Assuntos
Estimulação Encefálica Profunda , Mesencéfalo , Vias Neurais , Área Tegmentar Ventral , Humanos , Estimulação Encefálica Profunda/métodos , Vias Neurais/fisiologia , Mesencéfalo/fisiologia , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/diagnóstico por imagem , Masculino , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Imagem de Tensor de Difusão , Córtex Pré-Frontal/fisiologia , Feminino , Gânglios da Base/fisiologia
5.
Nano Lett ; 24(28): 8709-8716, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976365

RESUMO

Sealing wet porous membranes is a major challenge when fabricating cell encapsulation devices. Herein, we report the development of an Autoclavable Transparent Thermal Cutter (ATTC) for reliably sealing wet nanofibrous membranes. Notably, the ATTC is autoclavable and transparent, thus enabling in situ visualization of the sealing process in a sterile environment and ensuring an appropriate seal. In addition, the ATTC could generate smooth, arbitrary-shaped sealing ends with excellent mechanical properties when sealing PA6, PVDF, and TPU nanofibrous tubes and PP microporous membranes. Importantly, the ATTC could reliably seal wet nanofibrous tubes, which can shoulder a burst pressure up to 313.2 ± 19.3 kPa without bursting at the sealing ends. Furthermore, the ATTC sealing process is highly compatible with the fabrication of cell encapsulation devices, as verified by viability, proliferation, cell escape, and cell function tests. We believe that the ATTC could be used to reliably seal cell encapsulation devices with minimal side effects.

6.
BMC Genomics ; 25(1): 1005, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39465384

RESUMO

BACKGROUND: Gram-negative bacteria are the main bacterial pathogens infecting Chinese giant salamanders (Andrias davidianus; CGS) in captivity and the wild, causing substantial economic losses in the CGS industry. However, the molecular mechanisms underlying pathogenesis following infection remain unclear. RESULTS: Spleen-derived macrophages from healthy CGS were isolated, cultured, and identified using density gradient centrifugation and immunofluorescence. A macrophage transcriptome database was established 0, 6, and 12 h post lipopolysaccharide stimulation using RNA-sequencing. In the final database 76,743 unigenes and 4,698 differentially expressed genes (DEGs) were functionally annotated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment results showed that DEGs were concentrated in toll-like receptor-nuclear factor kappa B-related immune pathways. Ten DEGs were validated 12 h after lipopolysaccharide (LPS) stimulation. Although the common LPS recognition receptor toll-like receptor 4 was not activated and the key adaptor protein MyD88 showed no significant response, we observed significant up-regulation of the following adaptors: toll/interleukin-1 receptor domain-containing adaptor inducing interferon-ß, tumour necrosis factor receptor-associated factor 6, and transforming growth factor-ß activated kinase 1, which are located downstream of the non-classical MyD88 pathway. CONCLUSIONS: In contrast to that in other species, macrophage activation in CGS could depend on the non-classical MyD88 pathway in response to bacterial infection. Our study provides insights into the molecular mechanisms regulating CGS antibacterial responses, with implications for disease prevention and understanding immune evolution in amphibians.


Assuntos
Perfilação da Expressão Gênica , Lipopolissacarídeos , Macrófagos , Fator 88 de Diferenciação Mieloide , Transdução de Sinais , Baço , Urodelos , Animais , Lipopolissacarídeos/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Urodelos/genética , Urodelos/microbiologia , Baço/metabolismo , Transcriptoma
7.
Hum Genet ; 143(8): 939-953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969938

RESUMO

Unilateral moyamoya disease (MMD) represents a distinct subtype characterised by occlusive changes in the circle of Willis and abnormal vascular network formation. However, the aetiology and pathogenesis of unilateral MMD remain unclear. In this study, genetic screening of a family with unilateral MMD using whole-genome sequencing helped identify the c.1205 C > A variant of FOXM1, which encodes the transcription factor FOXM1 and plays a crucial role in angiogenesis and cell proliferation, as a susceptibility gene mutation. We demonstrated that this mutation significantly attenuated the proangiogenic effects of FOXM1 in human brain endothelial cells, leading to reduced proliferation, migration, and tube formation. Furthermore, FOXM1 c.1205 C > A results in increased apoptosis of human brain endothelial cells, mediated by the downregulation of the transcription of the apoptosis-inhibiting protein BCL2. These results suggest a potential role for the FOXM1 c.1205 C > A mutation in the pathogenesis of unilateral MMD and may contribute to the understanding and treatment of this condition.


Assuntos
Angiogênese , Encéfalo , Proliferação de Células , Células Endoteliais , Proteína Forkhead Box M1 , Doença de Moyamoya , Mutação , Adulto , Feminino , Humanos , Masculino , Angiogênese/fisiopatologia , Apoptose/genética , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/irrigação sanguínea , Movimento Celular/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Predisposição Genética para Doença , Doença de Moyamoya/genética , Doença de Moyamoya/patologia , Linhagem , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
8.
Anal Chem ; 96(19): 7323-7331, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695421

RESUMO

While microplastics and nanoplastics are emerging as a big environmental concern, their characterization is still a challenge, particularly for identification and simultaneous quantification analysis where imaging via a hyper spectrum is generally needed. In the past few years, Raman imaging has been greatly advanced, but the analysis protocol is complicated and not yet standardized because imaging analysis is different from traditional analysis. Herein we provide a step-by-step demonstration of how to employ confocal Raman techniques to image microplastics and nanoplastics.

9.
Hum Brain Mapp ; 45(3): e26630, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38376145

RESUMO

The frontal aslant tract (FAT) is a crucial neural pathway of language and speech, but little is known about its connectivity and segmentation differences across populations. In this study, we investigate the probabilistic coverage of the FAT in a large sample of 1065 young adults. Our primary goal was to reveal individual variability and lateralization of FAT and its structure-function correlations in language processing. The study utilized diffusion MRI data from 1065 subjects obtained from the Human Connectome Project. Automated tractography using DSI Studio software was employed to map white matter bundles, and the results were examined to study the population variation of the FAT. Additionally, anatomical dissections were performed to validate the fiber tracking results. The tract-to-region connectome, based on Human Connectome Project-MMP parcellations, was utilized to provide population probability of the tract-to-region connections. Our results showed that the left anterior FAT exhibited the most substantial individual differences, particularly in the superior and middle frontal gyrus, with greater variability in the superior than the inferior region. Furthermore, we found left lateralization in FAT, with a greater difference in coverage in the inferior and posterior portions. Additionally, our analysis revealed a significant positive correlation between the left FAT inferior coverage area and the performance on the oral reading recognition (p = .016) and picture vocabulary (p = .0026) tests. In comparison, fractional anisotropy of the right FAT exhibited marginal significance in its correlation (p = .056) with Picture Vocabulary Test. Our findings, combined with the connectivity patterns of the FAT, allowed us to segment its structure into anterior and posterior segments. We found significant variability in FAT coverage among individuals, with left lateralization observed in both macroscopic shape measures and microscopic diffusion metrics. Our findings also suggested a potential link between the size of the left FAT's inferior coverage area and language function tests. These results enhance our understanding of the FAT's role in brain connectivity and its potential implications for language and executive functions.


Assuntos
Conectoma , Substância Branca , Humanos , Adulto Jovem , Imagem de Tensor de Difusão , Encéfalo/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Idioma , Vias Neurais/diagnóstico por imagem
10.
Hum Brain Mapp ; 45(9): e26771, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38925589

RESUMO

Neuroimaging studies have consistently demonstrated concurrent activation of the human precuneus and temporal pole (TP), both during resting-state conditions and various higher-order cognitive functions. However, the precise underlying structural connectivity between these brain regions remains uncertain despite significant advancements in neuroscience research. In this study, we investigated the connectivity of the precuneus and TP by employing parcellation-based fiber micro-dissections in human brains and fiber tractography techniques in a sample of 1065 human subjects and a sample of 41 rhesus macaques. Our results demonstrate the connectivity between the posterior precuneus area POS2 and the areas 35, 36, and TG of the TP via the fifth subcomponent of the cingulum (CB-V) also known as parahippocampal cingulum. This finding contributes to our understanding of the connections within the posteromedial cortices, facilitating a more comprehensive integration of anatomy and function in both normal and pathological brain processes. PRACTITIONER POINTS: Our investigation delves into the intricate architecture and connectivity patterns of subregions within the precuneus and temporal pole, filling a crucial gap in our knowledge. We revealed a direct axonal connection between the posterior precuneus (POS2) and specific areas (35, 35, and TG) of the temporal pole. The direct connections are part of the CB-V pathway and exhibit a significant association with the cingulum, SRF, forceps major, and ILF. Population-based human tractography and rhesus macaque fiber tractography showed consistent results that support micro-dissection outcomes.


Assuntos
Imagem de Tensor de Difusão , Macaca mulatta , Vias Neurais , Lobo Parietal , Lobo Temporal , Humanos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Lobo Temporal/anatomia & histologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Lobo Parietal/anatomia & histologia , Animais , Imagem de Tensor de Difusão/métodos , Masculino , Adulto , Feminino , Vias Neurais/diagnóstico por imagem , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Adulto Jovem , Axônios/fisiologia , Conectoma , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiologia , Giro do Cíngulo/anatomia & histologia
11.
Cancer Immunol Immunother ; 73(8): 137, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833034

RESUMO

Tumor-infiltrating lymphocyte (TIL) deficiency is the most conspicuous obstacle to limit the cancer immunotherapy. Immune checkpoint inhibitors (ICIs), such as anti-PD-1 antibody, have achieved great success in clinical practice. However, due to the limitation of response rates of ICIs, some patients fail to benefit from monotherapy. Thus, novel combination therapy that could improve the response rates emerges as new strategies for cancer treatment. Here, we reported that the natural product rocaglamide (RocA) increased tumor-infiltrating T cells and promoted Th17 differentiation of CD4+ TILs. Despite RocA monotherapy upregulated PD-1 expression of TILs, which was considered as the consequence of T cell activation, combining RocA with anti-PD-1 antibody significantly downregulated the expression of PD-1 and promoted proliferation of TILs. Taken together, these findings demonstrated that RocA could fuel the T cell anti-tumor immunity and revealed the remarkable potential of RocA as a therapeutic candidate when combining with the ICIs.


Assuntos
Benzofuranos , Diferenciação Celular , Inibidores de Checkpoint Imunológico , Linfócitos do Interstício Tumoral , Receptor de Morte Celular Programada 1 , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Animais , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Humanos , Diferenciação Celular/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linhagem Celular Tumoral
12.
J Neuroinflammation ; 21(1): 110, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678254

RESUMO

Obesity, a burgeoning global health issue, is increasingly recognized for its detrimental effects on the central nervous system, particularly concerning the integrity of the blood-brain barrier (BBB). This manuscript delves into the intricate relationship between obesity and BBB dysfunction, elucidating the underlying phenotypes and molecular mechanisms. We commence with an overview of the BBB's critical role in maintaining cerebral homeostasis and the pathological alterations induced by obesity. By employing a comprehensive literature review, we examine the structural and functional modifications of the BBB in the context of obesity, including increased permeability, altered transport mechanisms, and inflammatory responses. The manuscript highlights how obesity-induced systemic inflammation and metabolic dysregulation contribute to BBB disruption, thereby predisposing individuals to various neurological disorders. We further explore the potential pathways, such as oxidative stress and endothelial cell dysfunction, that mediate these changes. Our discussion culminates in the summary of current findings and the identification of knowledge gaps, paving the way for future research directions. This review underscores the significance of understanding BBB dysfunction in obesity, not only for its implications in neurodegenerative diseases but also for developing targeted therapeutic strategies to mitigate these effects.


Assuntos
Barreira Hematoencefálica , Obesidade , Fenótipo , Humanos , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/metabolismo , Obesidade/patologia , Obesidade/metabolismo , Obesidade/complicações , Obesidade/fisiopatologia , Animais
13.
J Neuroinflammation ; 21(1): 265, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39427196

RESUMO

The blood-brain barrier (BBB) is a critical interface that maintains the central nervous system homeostasis by controlling the exchange of substances between the blood and the brain. Disruption of the BBB plays a vital role in the development of neuroinflammation and neurological dysfunction in sepsis, but the mechanisms by which the BBB becomes disrupted during sepsis are not well understood. Here, we induced endotoxemia, a major type of sepsis, in mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS acutely increased BBB permeability, activated microglia, and heightened inflammatory responses in brain endothelium and parenchyma. Concurrently, LPS or proinflammatory cytokines activated the NF-κB pathway, inhibiting Wnt/ß-catenin signaling in brain endothelial cells in vitro and in vivo. Cell culture study revealed that NF-κB p65 directly interacted with ß-catenin to suppress Wnt/ß-catenin signaling. Pharmacological NF-κB pathway inhibition restored brain endothelial Wnt/ß-catenin signaling activity and mitigated BBB disruption and neuroinflammation in septic mice. Furthermore, genetic or pharmacological activation of brain endothelial Wnt/ß-catenin signaling substantially alleviated LPS-induced BBB leakage and neuroinflammation, while endothelial conditional ablation of the Wnt7a/7b co-receptor Gpr124 exacerbated the BBB leakage caused by LPS. Mechanistically, Wnt/ß-catenin signaling activation rectified the reduced expression levels of tight junction protein ZO-1 and transcytosis suppressor Mfsd2a in brain endothelial cells of mice with endotoxemia, inhibiting both paracellular and transcellular permeability of the BBB. Our findings demonstrate that endotoxemia-associated systemic inflammation decreases endothelial Wnt/ß-catenin signaling through activating NF-κB pathway, resulting in acute BBB disruption and neuroinflammation. Targeting the endothelial Wnt/ß-catenin signaling may offer a promising therapeutic strategy for preserving BBB integrity and treating neurological dysfunction in sepsis.


Assuntos
Barreira Hematoencefálica , Endotoxemia , Lipopolissacarídeos , Doenças Neuroinflamatórias , Via de Sinalização Wnt , Animais , Masculino , Camundongos , beta Catenina/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Endotoxemia/metabolismo , Endotoxemia/complicações , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/metabolismo , Via de Sinalização Wnt/fisiologia , Via de Sinalização Wnt/efeitos dos fármacos
14.
Nat Methods ; 18(7): 775-778, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34155395

RESUMO

Diffusion-weighted magnetic resonance imaging (dMRI) is the primary method for noninvasively studying the organization of white matter in the human brain. Here we introduce QSIPrep, an integrative software platform for the processing of diffusion images that is compatible with nearly all dMRI sampling schemes. Drawing on a diverse set of software suites to capitalize on their complementary strengths, QSIPrep facilitates the implementation of best practices for processing of diffusion images.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , Humanos , Linguagens de Programação , Fluxo de Trabalho
15.
Appl Environ Microbiol ; 90(5): e0004624, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38563787

RESUMO

Dietary fiber metabolism by gut microorganisms plays important roles in host physiology and health. Alginate, the major dietary fiber of daily diet seaweeds, is drawing more attention because of multiple biological activities. To advance the understanding of alginate assimilation mechanism in the gut, we show the presence of unsaturated alginate oligosaccharides (uAOS)-specific alginate utilization loci (AUL) in human gut microbiome. As a representative example, a working model of the AUL from the gut microorganism Bacteroides clarus was reconstructed from biochemistry and transcriptome data. The fermentation of resulting monosaccharides through Entner-Doudoroff pathway tunes the metabolism of short-chain fatty acids and amino acids. Furthermore, we show that uAOS feeding protects the mice against dextran sulfate sodium-induced acute colitis probably by remodeling gut microbiota and metabolome. IMPORTANCE: Alginate has been included in traditional Chinese medicine and daily diet for centuries. Recently discovered biological activities suggested that alginate-derived alginate oligosaccharides (AOS) might be an active ingredient in traditional Chinese medicine, but how these AOS are metabolized in the gut and how it affects health need more information. The study on the working mechanism of alginate utilization loci (AUL) by the gut microorganism uncovers the role of unsaturated alginate oligosaccharides (uAOS) assimilation in tuning short-chain fatty acids and amino acids metabolism and demonstrates that uAOS metabolism by gut microorganisms results in a variation of cell metabolites, which potentially contributes to the physiology and health of gut.


Assuntos
Alginatos , Microbioma Gastrointestinal , Oligossacarídeos , Alginatos/metabolismo , Oligossacarídeos/metabolismo , Camundongos , Animais , Humanos , Colite/microbiologia , Colite/induzido quimicamente , Camundongos Endogâmicos C57BL , Ácidos Graxos Voláteis/metabolismo , Inflamação/metabolismo , Sulfato de Dextrana , Fibras na Dieta/metabolismo
16.
Ann Surg Oncol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937411

RESUMO

BACKGROUND: The purpose of this study was to investigate the effect of tumor size and differentiation grade on long term survival in patients with early-stage lung adenocarcinoma (LUAD) after lobectomy and segmentectomy. PATIENTS AND METHODS: Patients with stage T1-2N0M0 LUAD who underwent lobectomy and segmentectomy were identified from the Surveillance, Epidemiology, and End Results database. Patients were stratified as grade I (well differentiated), grade II (moderately differentiated), and grade III/IV (poorly differentiated/undifferentiated) carcinomas. The effect of tumor size on overall survival (OS) and lung cancer-specific survival (LCSS) was evaluated using the multivariate Cox regression model, including the interaction between tumor size, type of surgery, and tumor differentiation grade. The inverse probability of treatment weighting method was used to adjust for bias between the groups. RESULTS: A total of 19,857 patients were identified, including 18,759 (94.4%) who underwent lobectomy and 1098 (5.5%) who underwent segmentectomy. A three-way interaction among tumor size, differentiation grade, and type of surgery was observed in the overall cohort. After stratifying by differentiation grade, plots of interaction revealed that lobectomy was associated with improved survival compared with segmentectomy when the tumor size exceeded 23 mm for grade I LUAD and 14 mm for grade II LUAD. No interaction was observed between the studied factors in grade III/IV carcinomas. CONCLUSIONS: This study interpreted the interaction between tumor size and type of surgery on long-term survival in patients with early stage LUAD and established a tumor size threshold beyond which lobectomy provided survival benefits compared with segmentectomy.

17.
Phys Rev Lett ; 132(8): 086101, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457702

RESUMO

The exploration of solid-solid phase transition suffers from the uncertainty of how atoms in two crystal structures match. We devised a theoretical framework to describe and classify crystal-structure matches (CSM). Such description fully exploits the translational and rotational symmetries and is independent of the choice of supercells. This is enabled by the use of the Hermite normal form, an analog of reduced echelon form for integer matrices. With its help, exhausting all CSMs is made possible, which goes beyond the conventional optimization schemes. In an example study of the martensitic transformation of steel, our enumeration algorithm finds many candidate CSMs with lower strains than known mechanisms. Two long-sought CSMs accounting for the most commonly observed Kurdjumov-Sachs orientation relationship and the Nishiyama-Wassermann orientation relationship are unveiled. Given the comprehensiveness and efficiency, our enumeration scheme provide a promising strategy for solid-solid phase transition mechanism research.

18.
J Magn Reson Imaging ; 60(5): 1892-1901, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38263789

RESUMO

BACKGROUND: Insular low-grade gliomas (LGGs) are surgically challenging due to their proximity to critical structures like the corticospinal tract (CST). PURPOSE: This study aims to determine if preoperative CST shape metrics correlate with postoperative motor complications in insular LGG patients. STUDY TYPE: Retrospective. POPULATION: 42 patients (mean age 40.26 ± 10.21 years, 25 male) with insular LGGs. FIELD STRENGTH/SEQUENCE: Imaging was performed using 3.0 Tesla MRI, incorporating T1-weighted magnetization-prepared rapid gradient-echo, T2-weighted space dark-fluid with spin echo (SE), and diffusional kurtosis imaging (DKI) with gradient echo sequences, all integrated with echo planar imaging. ASSESSMENT: Shape metrics of the CST, including span, irregularity, radius, and irregularity of end regions (RER and IER, respectively), were compared between the affected and healthy hemispheres. Total end region radius (TRER) was determined as the sum of RER 1 and RER 2. The relationships between shape metrics and postoperative short-term (4 weeks) and long-term (>8 weeks) motor disturbances assessing by British Medical Research Council grading system, was analyzed using multivariable regression models. STATISTICAL TESTING: Paired t-tests compared CST metrics between hemispheres. Logistic regression identified associations between these metrics and motor disturbances. The models were developed using all available data and there was no independent validation dataset. Significance was set at P < 0.05. RESULTS: Short-term motor disturbance risk was significantly related to TRER (OR = 199.57). Long-term risk significantly correlated with IER 1 (OR = 59.84), confirmed as a significant marker with an AUC of 0.78. Furthermore, the CST on the affected side significantly had the greater irregularity, larger TRER and RER 1, and smaller span compared to the healthy side. DATA CONCLUSION: Preoperative evaluation of TRER and IER 1 metrics in the CST may serve as a tool for assessing the risk of postoperative motor complications in insular LGG patients. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética , Complicações Pós-Operatórias , Tratos Piramidais , Humanos , Masculino , Glioma/diagnóstico por imagem , Glioma/cirurgia , Feminino , Adulto , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Tratos Piramidais/diagnóstico por imagem , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico por imagem
19.
Cell Commun Signal ; 22(1): 21, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195554

RESUMO

Tumor cells primarily employ the PD-1/PD-L1 pathway to thwart the anti-tumor capabilities of T lymphocytes, inducing immunosuppression. This occurs through the direct interaction of PD-L1 with PD-1 on T lymphocyte surfaces. Recent research focusing on the tumor microenvironment has illuminated the pivotal role of immune cells, particularly tumor-associated macrophages (TAMs), in facilitating PD-L1-mediated immunosuppression. Exosomes, characterized by their ability to convey information and be engulfed by cells, significantly contribute to promoting TAM involvement in establishing PD-L1-mediated immunosuppression within the tumor microenvironment. Exosomes, characterized by their ability to convey information and be engulfed by cells, significantly contribute to promoting TAM involvement in establishing PD-L1-mediated immunosuppression within the tumor microenvironment. In addition to receiving signals from tumor-derived exosomes that promote PD-L1 expression, TAMs also exert control over PD-L1 expression in tumor cells through the release of exosomes. This paper aims to summarize the mechanisms by which exosomes participate in this process, identify crucial factors that influence these mechanisms, and explore innovative strategies for inhibiting or reversing the tumor-promoting effects of TAMs by targeting exosomes.


Assuntos
Exossomos , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Macrófagos Associados a Tumor , Terapia de Imunossupressão
20.
J Neurooncol ; 166(1): 155-165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150062

RESUMO

OBJECTIVES: This study aims to explore the relationship between the methylation levels of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter and the structural connectivity in insular gliomas across hemispheres. METHODS: We analyzed 32 left and 29 right insular glioma cases and 50 healthy controls, using differential tractography, correlational tractography, and graph theoretical analysis to investigate the correlation between structural connectivity and the methylation level. RESULTS: The differential tractography results revealed that in left insular glioma, the volume of affected inferior fronto-occipital fasciculus (IFOF, p = 0.019) significantly correlated with methylation levels. Correlational tractography results showed that the quantitative anisotropy (QA) value of peritumoral fiber tracts also exhibited a significant correlation with methylation levels (FDR < 0.05). On the other hand, in right insular glioma, anterior internal part of the reticular tract, IFOF, and thalamic radiation showed a significant correlation with methylation levels but at a different correlation direction from the left side (FDR < 0.05). The graph theoretical analysis showed that in the left insular gliomas, only the radius of graph was significantly lower in methylated MGMT group than unmethylated group (p = 0.047). No significant correlations between global properties and methylation levels were observed in insular gliomas on both sides. CONCLUSION: Our findings highlight a significant, hemisphere-specific correlation between MGMT promoter methylation and structural connectivity in insular gliomas. This study provides new insights into the genetic influence on glioma pathology, which could inform targeted therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Metilação de DNA , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/tratamento farmacológico , Enzimas Reparadoras do DNA/genética , O(6)-Metilguanina-DNA Metiltransferase/genética , Metilases de Modificação do DNA/genética , Regiões Promotoras Genéticas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA