Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.515
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 170(3): 548-563.e16, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753429

RESUMO

Gut microbiota are linked to chronic inflammation and carcinogenesis. Chemotherapy failure is the major cause of recurrence and poor prognosis in colorectal cancer patients. Here, we investigated the contribution of gut microbiota to chemoresistance in patients with colorectal cancer. We found that Fusobacterium (F.) nucleatum was abundant in colorectal cancer tissues in patients with recurrence post chemotherapy, and was associated with patient clinicopathological characterisitcs. Furthermore, our bioinformatic and functional studies demonstrated that F. nucleatum promoted colorectal cancer resistance to chemotherapy. Mechanistically, F. nucleatum targeted TLR4 and MYD88 innate immune signaling and specific microRNAs to activate the autophagy pathway and alter colorectal cancer chemotherapeutic response. Thus, F. nucleatum orchestrates a molecular network of the Toll-like receptor, microRNAs, and autophagy to clinically, biologically, and mechanistically control colorectal cancer chemoresistance. Measuring and targeting F. nucleatum and its associated pathway will yield valuable insight into clinical management and may ameliorate colorectal cancer patient outcomes.


Assuntos
Autofagia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Fusobacterium nucleatum/fisiologia , Microbioma Gastrointestinal , Animais , Antineoplásicos/uso terapêutico , Capecitabina/uso terapêutico , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Xenoenxertos , Camundongos , MicroRNAs/metabolismo , Transplante de Neoplasias , Compostos de Platina/uso terapêutico , Recidiva , Receptores Toll-Like/metabolismo , Microambiente Tumoral
2.
Mol Cell ; 83(6): 829-831, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931254

RESUMO

Hexokinase 2 (HK2) plays a multifaceted role in the regulation of cellular activities. A new study by Hu et al.1 delineated a critical role of HK2 in governing glycolytic flux and mitochondrial activity, thereby modulating microglial functions in maladaptive inflammation in brain diseases.


Assuntos
Hexoquinase , Microglia , Hexoquinase/genética , Hexoquinase/metabolismo , Microglia/metabolismo , Controle de Acesso , Mitocôndrias/metabolismo , Glicólise/fisiologia , Glucose/metabolismo
3.
Nat Immunol ; 18(2): 236-245, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28024152

RESUMO

Toll-like receptor (TLR) activation contributes to premalignant hematologic conditions, such as myelodysplastic syndromes (MDS). TRAF6, a TLR effector with ubiquitin (Ub) ligase activity, is overexpressed in MDS hematopoietic stem/progenitor cells (HSPCs). We found that TRAF6 overexpression in mouse HSPC results in impaired hematopoiesis and bone marrow failure. Using a global Ub screen, we identified hnRNPA1, an RNA-binding protein and auxiliary splicing factor, as a substrate of TRAF6. TRAF6 ubiquitination of hnRNPA1 regulated alternative splicing of Arhgap1, which resulted in activation of the GTP-binding Rho family protein Cdc42 and accounted for hematopoietic defects in TRAF6-expressing HSPCs. These results implicate Ub signaling in coordinating RNA processing by TLR pathways during an immune response and in premalignant hematologic diseases, such as MDS.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Síndromes Mielodisplásicas/imunologia , Lesões Pré-Cancerosas/imunologia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitinação , Animais , Autoimunidade , Células Cultivadas , Hematopoese/genética , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/genética , Fator 6 Associado a Receptor de TNF/genética , Receptores Toll-Like/metabolismo , Ubiquitinação/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
4.
Mol Cell ; 81(11): 2303-2316.e8, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33991485

RESUMO

Glutaminase regulates glutaminolysis to promote cancer cell proliferation. However, the mechanism underlying glutaminase activity regulation is largely unknown. Here, we demonstrate that kidney-type glutaminase (GLS) is highly expressed in human pancreatic ductal adenocarcinoma (PDAC) specimens with correspondingly upregulated glutamine dependence for PDAC cell proliferation. Upon oxidative stress, the succinyl-coenzyme A (CoA) synthetase ADP-forming subunit ß (SUCLA2) phosphorylated by p38 mitogen-activated protein kinase (MAPK) at S79 dissociates from GLS, resulting in enhanced GLS K311 succinylation, oligomerization, and activity. Activated GLS increases glutaminolysis and the production of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione, thereby counteracting oxidative stress and promoting tumor cell survival and tumor growth in mice. In addition, the levels of SUCLA2 pS79 and GLS K311 succinylation, which were mutually correlated, were positively associated with advanced stages of PDAC and poor prognosis for patients. Our findings reveal critical regulation of GLS by SUCLA2-coupled GLS succinylation regulation and underscore the regulatory role of metabolites in glutaminolysis and PDAC development.


Assuntos
Carcinoma Ductal Pancreático/genética , Glutaminase/genética , Neoplasias Pancreáticas/genética , Succinato-CoA Ligases/genética , Animais , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/mortalidade , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glutaminase/metabolismo , Glutamina/metabolismo , Glutationa/metabolismo , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , NADP/metabolismo , Estresse Oxidativo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/mortalidade , Fosforilação , Prognóstico , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Succinato-CoA Ligases/metabolismo , Ácido Succínico/metabolismo , Análise de Sobrevida , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Mol Cell ; 76(6): 885-895.e7, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31629659

RESUMO

Hypoxia, which occurs during tumor growth, triggers complex adaptive responses in which peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) plays a critical role in mitochondrial biogenesis and oxidative metabolism. However, how PGC-1α is regulated in response to oxygen availability remains unclear. We demonstrated that lysine demethylase 3A (KDM3A) binds to PGC-1α and demethylates monomethylated lysine (K) 224 of PGC-1α under normoxic conditions. Hypoxic stimulation inhibits KDM3A, which has a high KM of oxygen for its activity, and enhances PGC-1α K224 monomethylation. This modification decreases PGC-1α's activity required for NRF1- and NRF2-dependent transcriptional regulation of TFAM, TFB1M, and TFB2M, resulting in reduced mitochondrial biogenesis. Expression of PGC-1α K224R mutant significantly increases mitochondrial biogenesis, reactive oxygen species (ROS) production, and tumor cell apoptosis under hypoxia and inhibits brain tumor growth in mice. This study revealed that PGC-1α monomethylation, which is dependent on oxygen availability-regulated KDM3A, plays a critical role in the regulation of mitochondrial biogenesis.


Assuntos
Neoplasias Encefálicas/enzimologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mitocôndrias/enzimologia , Biogênese de Organelas , Oxigênio/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Carga Tumoral , Hipóxia Tumoral , Microambiente Tumoral
6.
Nat Chem Biol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538923

RESUMO

Telomere dysfunction is intricately linked to the aging process and stands out as a prominent cancer hallmark. Here we demonstrate that telomerase activity is differentially regulated in cancer and normal cells depending on the expression status of fructose-1,6-bisphosphatase 1 (FBP1). In FBP1-expressing cells, FBP1 directly interacts with and dephosphorylates telomerase reverse transcriptase (TERT) at Ser227. Dephosphorylated TERT fails to translocate into the nucleus, leading to the inhibition of telomerase activity, reduction in telomere lengths, enhanced senescence and suppressed tumor cell proliferation and growth in mice. Lipid nanoparticle-mediated delivery of FBP1 mRNA inhibits liver tumor growth. Additionally, FBP1 expression levels inversely correlate with TERT pSer227 levels in renal and hepatocellular carcinoma specimens and with poor prognosis of the patients. These findings demonstrate that FBP1 governs cell immortality through its protein phosphatase activity and uncover a unique telomerase regulation in tumor cells attributed to the downregulation or deficiency of FBP1 expression.

7.
Mol Cell ; 72(4): 650-660.e8, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30392930

RESUMO

DNA replication is initiated by assembly of the kinase cell division cycle 7 (CDC7) with its regulatory activation subunit, activator of S-phase kinase (ASK), to activate DNA helicase. However, the mechanism underlying regulation of CDC7-ASK complex is unclear. Here, we show that ADP generated from CDC7-mediated MCM phosphorylation binds to an allosteric region of CDC7, disrupts CDC7-ASK interaction, and inhibits CDC7-ASK activity in a feedback way. EGFR- and ERK-activated casein kinase 2α (CK2α) phosphorylates nuclear phosphoglycerate kinase (PGK) 1 at S256, resulting in interaction of PGK1 with CDC7. CDC7-bound PGK1 converts ADP to ATP, thereby abrogating the inhibitory effect of ADP on CDC7-ASK activity, promoting the recruitment of DNA helicase to replication origins, DNA replication, cell proliferation, and brain tumorigenesis. These findings reveal an instrumental self-regulatory mechanism of CDC7-ASK activity by its kinase reaction product ADP and a nonglycolytic role for PGK1 in abrogating this negative feedback in promoting tumor development.


Assuntos
Difosfato de Adenosina/metabolismo , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Replicação do DNA , Fosfoglicerato Quinase/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Caseína Quinase II/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , DNA Helicases/genética , DNA Helicases/metabolismo , Feminino , Xenoenxertos , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfoglicerato Quinase/genética , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Origem de Replicação
8.
Proc Natl Acad Sci U S A ; 120(15): e2209435120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011206

RESUMO

Aberrantly upregulated choline phospholipid metabolism is a novel emerging hallmark of cancer, and choline kinase α (CHKα), a key enzyme for phosphatidylcholine production, is overexpressed in many types of human cancer through undefined mechanisms. Here, we demonstrate that the expression levels of the glycolytic enzyme enolase-1 (ENO1) are positively correlated with CHKα expression levels in human glioblastoma specimens and that ENO1 tightly governs CHKα expression via posttranslational regulation. Mechanistically, we reveal that both ENO1 and the ubiquitin E3 ligase TRIM25 are associated with CHKα. Highly expressed ENO1 in tumor cells binds to I199/F200 of CHKα, thereby abrogating the interaction between CHKα and TRIM25. This abrogation leads to the inhibition of TRIM25-mediated polyubiquitylation of CHKα at K195, increased stability of CHKα, enhanced choline metabolism in glioblastoma cells, and accelerated brain tumor growth. In addition, the expression levels of both ENO1 and CHKα are associated with poor prognosis in glioblastoma patients. These findings highlight a critical moonlighting function of ENO1 in choline phospholipid metabolism and provide unprecedented insight into the integrated regulation of cancer metabolism by crosstalk between glycolytic and lipidic enzymes.


Assuntos
Colina , Glioblastoma , Fosfopiruvato Hidratase , Humanos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Colina/metabolismo , Glioblastoma/genética , Fosfolipídeos/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(23): e2219419120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252972

RESUMO

Prolyl hydroxylase domain (PHD) enzymes change HIF activity according to oxygen signal; whether it is regulated by other physiological conditions remains largely unknown. Here, we report that PHD3 is induced by fasting and regulates hepatic gluconeogenesis through interaction and hydroxylation of CRTC2. Pro129 and Pro615 hydroxylation of CRTC2 following PHD3 activation is necessary for its association with cAMP-response element binding protein (CREB) and nuclear translocation, and enhanced binding to promoters of gluconeogenic genes by fasting or forskolin. CRTC2 hydroxylation-stimulated gluconeogenic gene expression is independent of SIK-mediated phosphorylation of CRTC2. Liver-specific knockout of PHD3 (PHD3 LKO) or prolyl hydroxylase-deficient knockin mice (PHD3 KI) show attenuated fasting gluconeogenic genes, glycemia, and hepatic capacity to produce glucose during fasting or fed with high-fat, high-sucrose diet. Importantly, Pro615 hydroxylation of CRTC2 by PHD3 is increased in livers of fasted mice, diet-induced insulin resistance or genetically obese ob/ob mice, and humans with diabetes. These findings increase our understanding of molecular mechanisms linking protein hydroxylation to gluconeogenesis and may offer therapeutic potential for treating excessive gluconeogenesis, hyperglycemia, and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Humanos , Camundongos , Animais , Glucose/metabolismo , Prolina/metabolismo , Hidroxilação , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Gluconeogênese/fisiologia , Prolil Hidroxilases/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL
10.
PLoS Pathog ; 19(2): e1011189, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36812247

RESUMO

Increasing evidence highlights the role of bacteria in promoting tumorigenesis. The underlying mechanisms may be diverse and remain poorly understood. Here, we report that Salmonella infection leads to extensive de/acetylation changes in host cell proteins. The acetylation of mammalian cell division cycle 42 (CDC42), a member of the Rho family of GTPases involved in many crucial signaling pathways in cancer cells, is drastically reduced after bacterial infection. CDC42 is deacetylated by SIRT2 and acetylated by p300/CBP. Non-acetylated CDC42 at lysine 153 shows an impaired binding of its downstream effector PAK4 and an attenuated phosphorylation of p38 and JNK, consequently reduces cell apoptosis. The reduction in K153 acetylation also enhances the migration and invasion ability of colon cancer cells. The low level of K153 acetylation in patients with colorectal cancer (CRC) predicts a poor prognosis. Taken together, our findings suggest a new mechanism of bacterial infection-induced promotion of colorectal tumorigenesis by modulation of the CDC42-PAK axis through manipulation of CDC42 acetylation.


Assuntos
Neoplasias Colorretais , Infecções por Salmonella , Proteína cdc42 de Ligação ao GTP , Humanos , Acetilação , Carcinogênese , Proteína cdc42 de Ligação ao GTP/metabolismo , Transformação Celular Neoplásica , Quinases Ativadas por p21/metabolismo , Transdução de Sinais
11.
EMBO Rep ; 24(4): e56325, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36794620

RESUMO

The frequency of p53 mutations in colorectal cancer (CRC) is approximately 40-50%. A variety of therapies are being developed to target tumors expressing mutant p53. However, potential therapeutic targets for CRC expressing wild-type p53 are rare. In this study, we show that METTL14 is transcriptionally activated by wild-type p53 and suppresses tumor growth only in p53-wild-type (p53-WT) CRC cells. METTL14 deletion promotes both AOM/DSS and AOM-induced CRC growth in mouse models with the intestinal epithelial cell-specific knockout of METTL14. Additionally, METTL14 restrains aerobic glycolysis in p53-WT CRC, by repressing SLC2A3 and PGAM1 expression via selectively promoting m6 A-YTHDF2-dependent pri-miR-6769b/pri-miR-499a processing. Biosynthetic mature miR-6769b-3p and miR-499a-3p decrease SLC2A3 and PGAM1 levels, respectively, and suppress malignant phenotypes. Clinically, METTL14 only acts as a beneficial prognosis factor for the overall survival of p53-WT CRC patients. These results uncover a new mechanism for METTL14 inactivation in tumors and, most importantly, reveal that the activation of METTL14 is a critical mechanism for p53-dependent cancer growth inhibition, which could be targeted for therapy in p53-WT CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Animais , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(10): e2110756119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235447

RESUMO

SignificanceAerosol-cloud interaction affects the cooling of Earth's climate, mostly by activation of aerosols as cloud condensation nuclei that can increase the amount of sunlight reflected back to space. But the controlling physical processes remain uncertain in current climate models. We present a lidar-based technique as a unique remote-sensing tool without thermodynamic assumptions for simultaneously profiling diurnal aerosol and water cloud properties with high resolution. Direct lateral observations of cloud properties show that the vertical structure of low-level water clouds can be far from being perfectly adiabatic. Furthermore, our analysis reveals that, instead of an increase of liquid water path (LWP) as proposed by most general circulation models, elevated aerosol loading can cause a net decrease in LWP.

13.
Gut ; 73(2): 268-281, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37734910

RESUMO

BACKGROUND AND AIMS: Deregulation of RNA N6-methyladenosine (m6A) modification in intestinal epithelial cells (IECs) influences intestinal immune cells and leads to intestinal inflammation. We studied the function of fat mass-and obesity-associated protein (FTO), one of the m6A demethylases, in patients with ulcerative colitis (UC). METHODS: We analysed colon tissues of Ftoflox/flox; Villin-cre mice and their Ftoflox/flox littermates with dextran sulfate sodium (DSS) using real-time PCR and 16s rRNA sequencing. RNA and methylated RNA immunoprecipitation sequencing were used to analyse immunocytes and IECs. Macrophages were treated with conditioned medium of FTO-knockdown MODE-K cells or sphingosine-1-phosphate (S1P) and analysed for gene expression. Liquid chromatograph mass spectrometry identified C16-ceramide. RESULTS: FTO downregulation was identified in our in-house cohort and external cohorts of UC patients. Dysbiosis of gut microbiota, increased infiltration of proinflammatory macrophages, and enhanced differentiation of Th17 cells were observed in Ftoflox/flox;Villin-cre mice under DSS treatment. FTO deficiency resulted in an increase in m6A modification and a decrease in mRNA stability of CerS6, the gene encoding ceramide synthetase, leading to the downregulation of CerS6 and the accumulation of S1P in IECs. Subsequentially, the secretion of S1P by IECs triggered proinflammatory macrophages to secrete serum amyloid A protein 1/3, ultimately inducing Th17 cell differentiation. In addition, through bioinformatic analysis and experimental validation, we identified UC patients with lower FTO expression might respond better to vedolizumab treatment. CONCLUSIONS: FTO downregulation promoted UC by decreasing CerS6 expression, leading to increased S1P accumulation in IECs and aggravating colitis via m6A-dependent mechanisms. Lower FTO expression in UC patients may enhance their response to vedolizumab treatment.


Assuntos
Colite Ulcerativa , Colite , Humanos , Animais , Camundongos , Colite Ulcerativa/metabolismo , RNA Ribossômico 16S/metabolismo , Mucosa Intestinal/metabolismo , Colite/induzido quimicamente , Colite/genética , Colo/metabolismo , Esfingolipídeos/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
14.
Gut ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122364

RESUMO

OBJECTIVE: During the last decade, the management of gastric intestinal metaplasia (GIM) has been addressed by several distinct international evidence-based guidelines. In this review, we aimed to synthesise these guidelines and provide clinicians with a global perspective of the current recommendations for managing patients with GIM, as well as highlight evidence gaps that need to be addressed with future research. DESIGN: We conducted a systematic review of the literature for guidelines and consensus statements published between January 2010 and February 2023 that address the diagnosis and management of GIM. RESULTS: From 426 manuscripts identified, 15 guidelines were assessed. There was consistency across guidelines regarding the purpose of endoscopic surveillance of GIM, which is to identify prevalent neoplastic lesions and stage gastric preneoplastic conditions. The guidelines also agreed that only patients with high-risk GIM phenotypes (eg, corpus-extended GIM, OLGIM stages III/IV, incomplete GIM subtype), persistent refractory Helicobacter pylori infection or first-degree family history of gastric cancer should undergo regular-interval endoscopic surveillance. In contrast, low-risk phenotypes, which comprise most patients with GIM, do not require surveillance. Not all guidelines are aligned on histological staging systems. If surveillance is indicated, most guidelines recommend a 3-year interval, but there is some variability. All guidelines recommend H. pylori eradication as the only non-endoscopic intervention for gastric cancer prevention, while some offer additional recommendations regarding lifestyle modifications. While most guidelines allude to the importance of high-quality endoscopy for endoscopic surveillance, few detail important metrics apart from stating that a systematic gastric biopsy protocol should be followed. Notably, most guidelines comment on the role of endoscopy for gastric cancer screening and detection of gastric precancerous conditions, but with high heterogeneity, limited guidance regarding implementation, and lack of robust evidence. CONCLUSION: Despite heterogeneous populations and practices, international guidelines are generally aligned on the importance of GIM as a precancerous condition and the need for a risk-stratified approach to endoscopic surveillance, as well as H. pylori eradication when present. There is room for harmonisation of guidelines regarding (1) which populations merit index endoscopic screening for gastric cancer and GIM detection/staging; (2) objective metrics for high-quality endoscopy; (3) consensus on the need for histological staging and (4) non-endoscopic interventions for gastric cancer prevention apart from H. pylori eradication alone. Robust studies, ideally in the form of randomised trials, are needed to bridge the ample evidence gaps that exist.

15.
Anal Chem ; 96(4): 1707-1716, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38241523

RESUMO

Improving the retention of small-molecule-based therapeutic agents in tumors is crucial to achieve precise diagnosis and effective therapy of cancer. Herein, we propose a ß-galactosidase (ß-Gal)-activated and red light-induced RNA modification (GALIRM) strategy for prolonged tumor imaging. A ß-Gal-activatable near-infrared (NIR) fluorescence (FL) and positron emission tomography (PET) bimodal probe 68Ga-NOTA-FCG consists of a triaaza triacetic acid chelator NOTA for 68Ga-labeling, a ß-Gal-activated photosensitizer CyGal, and a singlet oxygen (1O2)-susceptible furan group for RNA modification. Studies have demonstrated that the probe emits an activated NIR FL signal upon cleavage by endogenous ß-Gal overexpressed in the lysosomes, which is combined with the PET imaging signal of 68Ga allowing for highly sensitive imaging of ovarian cancer. Moreover, the capability of 68Ga-NOTA-FCG generating 1O2 under 690 nm illumination could be simultaneously unlocked, which can trigger the covalent cross-linking between furan and nucleotides of cytoplasmic RNAs. The formation of the probe-RNA conjugate can effectively prevent exocytosis and prolong retention of the probe in tumors. We thus believe that this GALIRM strategy may provide entirely new insights into long-term tumor imaging and efficient tumor treatment.


Assuntos
Neoplasias Ovarianas , Luz Vermelha , Feminino , Humanos , Fluorescência , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons/métodos , beta-Galactosidase , Furanos
17.
Hepatology ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016019

RESUMO

BACKGROUND AND AIMS: Base editing has shown great potential for treating human diseases with mutated genes. However, its potential for treating HCC has not yet been explored. APPROACH AND RESULTS: We employed adenine base editors (ABEs) to correct a telomerase reverse transcriptase ( TERT ) promoter mutation, which frequently occurs in various human cancers, including HCC. The mutated TERT promoter -124 C>T is corrected to -124 C by a single guide (sg) RNA-guided and deactivated Campylobacter jejuni Cas9 (CjCas9)-fused adenine base editor (CjABE). This edit impairs the binding of the E-twenty six/ternary complex factor transcription factor family, including E-twenty six-1 and GABPA, to the TERT promoter, leading to suppressed TERT promoter and telomerase activity, decreased TERT expression and cell proliferation, and increased cell senescence. Importantly, injection of adeno-associated viruses expressing sgRNA-guided CjABE or employment of lipid nanoparticle-mediated delivery of CjABE mRNA and sgRNA inhibits the growth of liver tumors harboring TERT promoter mutations. CONCLUSIONS: These findings demonstrate that a sgRNA-guided CjABE efficiently converts the mutated TERT promoter -124 C>T to -124 C in HCC cells and underscore the potential to treat HCC by the base editing-mediated correction of TERT promoter mutations.

18.
Bioconjug Chem ; 35(5): 665-673, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598424

RESUMO

Enhancing the accumulation and retention of small-molecule probes in tumors is an important way to achieve accurate cancer diagnosis and therapy. Enzyme-stimulated macrocyclization of small molecules possesses great potential for enhanced positron emission tomography (PET) imaging of tumors. Herein, we reported an 18F-labeled radiotracer [18F]AlF-RSM for legumain detection in vivo. The tracer was prepared by a one-step aluminum-fluoride-restrained complexing agent ([18F]AlF-RESCA) method with high radiochemical yield (RCY) (88.35 ± 3.93%) and radiochemical purity (RCP) (>95%). More notably, the tracer can be transformed into a hydrophobic macrocyclic molecule under the joint action of legumain and reductant. Simultaneously, the tracer could target legumain-positive tumors and enhance accumulation and retention in tumors, resulting in the amplification of PET imaging signals. The enhancement of radioactivity enables PET imaging of legumain activity with high specificity. We envision that, by combining this highly efficient 18F-labeled strategy with our intramolecular macrocyclization reaction, a range of radiofluorinated tracers can be designed for tumor PET imaging and early cancer diagnosis in the future.


Assuntos
Cisteína Endopeptidases , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Flúor/química , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/análise , Animais , Ciclização , Camundongos , Humanos , Compostos Radiofarmacêuticos/química , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Fluoretos/química , Camundongos Nus
19.
J Exp Bot ; 75(3): 1112-1127, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37935444

RESUMO

Iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) are essential micronutrients that are necessary for plant growth and development, but can be toxic at supra-optimal levels. Plants have evolved a complex homeostasis network that includes uptake, transport, and storage of these metals. It was shown that the transcription factor (TF) complex OsbHLH156-OsIRO2 is activated under Fe deficient conditions and acts as a central regulator on Strategy II Fe acquisition. In this study, the role of the TF complex on Mn, Cu, and Zn uptake was evaluated. While Fe deficiency led to significant increases in shoot Mn, Cu, and Zn concentrations, the increases of these divalent metal concentrations were significantly suppressed in osbhlh156 and osiro2 mutants, suggesting that the TF complex plays roles on Mn, Cu, and Zn uptake and transport. An RNA-sequencing assay showed that the genes associated with Mn, Cu, and Zn uptake and transport were significantly suppressed in the osbhlh156 and osiro2 mutants. Transcriptional activation assays demonstrated that the TF complex could directly bind to the promoters of OsIRT1, OsYSL15, OsNRAMP6, OsHMA2, OsCOPT1/7, and OsZIP5/9/10, and activate their expression. In addition, the TF complex is required to activate the expression of nicotianamine (NA) and 2'-deoxymugineic acid (DMA) synthesis genes, which in turn facilitate the uptake and transport of Mn, Cu, and Zn. Furthermore, OsbHLH156 and OsIRO2 promote Cu accumulation to partially restore the Fe-deficiency symptoms. Taken together, OsbHLH156 and OsIRO2 TF function as core regulators not only in Fe homeostasis, but also in Mn, Cu, and Zn accumulation.


Assuntos
Proteínas de Transporte , Cobre , Oryza , Cobre/metabolismo , Manganês/metabolismo , Oryza/metabolismo , Zinco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
MMWR Morb Mortal Wkly Rep ; 73(9): 191-198, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451865

RESUMO

Hypertension, or high blood pressure, is a major risk factor for heart disease and stroke. It increases with age and is highest among non-Hispanic Black or African American persons, men, persons aged ≥65 years, those of lower socioeconomic status, and those who live in the southern United States. Hypertension affects approximately one half of U.S. adults, and approximately one quarter of those persons have their blood pressure under control. Reducing population-level hypertension prevalence and improving control is a national priority. In 2017, updated guidelines for high blood pressure in adults recommended lowering the blood pressure threshold for diagnosis of hypertension. Analysis of data from the Behavioral Risk Factor Surveillance System found that age-standardized, self-reported diagnosed hypertension was approximately 30% during 2017-2021, with persistent differences by age, sex, race and ethnicity, level of education, and state of residence. During this period, the age-standardized prevalence of antihypertensive medication use among persons with hypertension increased by 3.1 percentage points, from 59.8% to 62.9% (p<0.001). Increases in antihypertensive medication use were observed in most sociodemographic groups and in many states. Assessing current trends in hypertension diagnosis and treatment can help guide the development of policies and implementation of interventions to reduce this important risk factor for cardiovascular disease and can aid in addressing health disparities.


Assuntos
Doenças Cardiovasculares , Hipertensão , Adulto , Masculino , Humanos , Estados Unidos/epidemiologia , Anti-Hipertensivos/uso terapêutico , Prevalência , Autorrelato , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA