Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Clin Cases ; 9(19): 4969-4979, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34307547

RESUMO

The coronavirus disease 2019 (COVID-19) raging around the world still has not been effectively controlled in most countries and regions. As a severe acute respiratory syndrome coronavirus, in addition to the most common infectious pneumonia, it can also cause digestive system disease such as diarrhea, nausea, vomiting, liver function damage, etc. In medical imaging, it manifests as thickening of the intestinal wall, intestinal perforation, pneumoperitoneum, ascites and decreased liver density. Angiotensin-converting enzyme 2 has great significance in COVID-19-related digestive tract diseases. In this review, we summarized the data on the clinical and imaging manifestations of gastrointestinal and liver injury caused by COVID-19 so far and explored its possible pathogenesis.

2.
Nanoscale Res Lett ; 10(1): 985, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26123274

RESUMO

Semiconductor nanowire photoelectrochemical cells have attracted extensive attention in the light-conversion field owing to the low-cost preparation, excellent optical absorption, and short distance of carrier collection. Although there are numbers of experimental investigations to improve the device performance, the understanding of the detailed process of photoelectric conversion needs to be further improved. In this work, a thorough optoelectronic simulation is employed to figure out how the nanowire diameter, doping concentration, and illumination wavelength affect the photoelectric conversion characteristics of the silicon nanowire array photoelectrodes. We find that two balances should be carefully weighted between optical absorption and photogenerated-carrier collection, along with between short-circuit photocurrent density and open-circuit voltage. For the small-diameter nanowire array photoelectrodes, the overall absorption is higher than that of the larger-diameter ones with the most contribution from the nanowires. However, the substrate shows increasing absorption with increasing illumination wavelength. Higher doping density leads to a larger open-circuit voltage; while lower doping density can guarantee a relatively higher short-circuit photocurrent. To obtain high-light-conversion-efficiency photoelectrodes, the doping density should be carefully chosen with considerations of illumination wavelength and surface recombination. Suppressing the surface recombination velocity can effectively enhance the short-circuit photocurrent (open-circuit voltage) for the lightly (heavily) doped nanowire array photoelectrodes. Our systematical results provide a theoretical guidance for the photoelectrochemical devices based on semiconductor nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA