Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256065

RESUMO

Our previous study showed that COPPER-CONTAINING AMINE OXIDASE (CuAO) and AMINOALDEHYDE DEHYDROGENASE (AMADH) could regulate the accumulation of γ-aminobutyric acid (GABA) in tea through the polyamine degradation pathway. However, their biological function in drought tolerance has not been determined. In this study, Camellia sinensis (Cs) CsCuAO1 associated with CsAMADH1 conferred drought tolerance, which modulated GABA levels in tea plants. The results showed that exogenous GABA spraying effectively alleviated the drought-induced physical damage. Arabidopsis lines overexpressing CsCuAO1 and CsAMADH1 exhibited enhanced resistance to drought, which promoted the synthesis of GABA and putrescine by stimulating reactive oxygen species' scavenging capacity and stomatal movement. However, the suppression of CsCuAO1 or CsAMADH1 in tea plants resulted in increased sensitivity to drought treatment. Moreover, co-overexpressing plants increased GABA accumulation both in an Agrobacterium-mediated Nicotiana benthamiana transient assay and transgenic Arabidopsis plants. In addition, a GABA transporter gene, CsGAT1, was identified, whose expression was strongly correlated with GABA accumulation levels in different tissues under drought stress. Taken together, CsCuAO1 and CsAMADH1 were involved in the response to drought stress through a dynamic GABA-putrescine balance. Our data will contribute to the characterization of GABA's biological functions in response to environmental stresses in plants.


Assuntos
Arabidopsis , Camellia sinensis , Resistência à Seca , Arabidopsis/genética , Camellia sinensis/genética , Putrescina , Plantas Geneticamente Modificadas/genética , Ácido gama-Aminobutírico , Chá
2.
J Sci Food Agric ; 99(9): 4344-4352, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30828822

RESUMO

BACKGROUND: Keemun black tea (KBT) is one of the most popular tea beverages in China as a result of its unique flavor and potential health benefits. The geographical origin of KBT influences its quality and price. The present study aimed to apply a head-space solid phase microextraction approach and gas chromatography-mass spectrometry combined with chemometric analysis to profile the volatile compounds of KBT collected from five production areas. RESULTS: Thirty-one peaks were detected in 61 KBT samples. Hierarchical cluster analysis, principal component analysis (PCA), k-nearest neighbor (k-NN) and stepwise linear discriminant analysis (SLDA) were employed to visualize the volatile fractions. The results of unsupervised statistical tools were compared using a test for similarities and distinctions, which showed that different sources may be associated. A satisfying combination of average recognition (91.7%) and cross-validation prediction abilities (84.6%) was obtained for the PCA-k-NN. Among all of the statistical tools, SLDA provided promising results, with 100% recognition and 96.4% prediction ability. CONCLUSION: The results obtained in the present study indicate that the volatile compounds can be used as indicators to identify the geographical origin of KBT. © 2019 Society of Chemical Industry.


Assuntos
Camellia sinensis/química , Chá/química , Compostos Orgânicos Voláteis/química , China , Análise Discriminante , Cromatografia Gasosa-Espectrometria de Massas , Geografia , Análise Multivariada , Análise de Componente Principal , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/isolamento & purificação
3.
J Sci Food Agric ; 99(15): 6937-6943, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31414496

RESUMO

BACKGROUND: Non-volatile compounds play a key role in the quality and price of Keemun black tea (KBT). The non-volatile compounds in KBT samples from different producing areas normally vary greatly. The development of rapid methods for tracing the geographical origin of KBT is useful. In this study, we develop models for the discrimination of KBT's geographical origin based on non-volatile compounds. RESULTS: Seventy-two KBT samples were collected from five towns in Anhui province to determine 13 KBT compounds by high-performance liquid chromatography (HPLC). Analysis of variance showed that the content of 13 compounds in KBT indicated significant differences (P < 0.05) among five towns. Three multivariate statistical models including principal component analysis (PCA), soft independent modeling of class analogy (SIMCA), and linear discriminant analysis (LDA) were built to discriminate origin. Principal component analysis effectively extracted three principal components, namely theaflavins, galloylated catechins, and simple catechins. The high sensitivity (64.5%-99.2%) was achieved of SIMCA model. To establish the discriminant functions, six variables (gallic acid, (+)-catechin, (-)-epigallocatechin gallate, theaflavin-3-gallate, theaflavin-3,3'-di-gallate, and total theaflavins) were chosen from 13 variables, and LDA was applied. This gave a satisfactory overall correct classification rate (94.4%) and cross-validation rate (88.9%) for KBT samples. CONCLUSION: The results showed that HPLC analysis together with chemometrics is a reliable approach for tracing KBT and guaranteeing its authenticity. © 2019 Society of Chemical Industry.


Assuntos
Camellia sinensis/química , Biflavonoides/análise , Camellia sinensis/classificação , Catequina/análogos & derivados , Catequina/análise , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Ácido Gálico/análogos & derivados , Ácido Gálico/análise , Modelos Estatísticos , Análise de Componente Principal , Chá/química
4.
Indian J Microbiol ; 59(3): 288-294, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31388205

RESUMO

To identify the microorganisms responsible for the formation of the main quality components of Qingzhuan brick tea (QZBT) during solid-state fermentation (SSF), predominant thermoduric strains were isolated from the tea leaves collected during SSF. According to their capability of releasing cellulase, pectase, protease, and polyphenol oxidase, four strains were selected as starter cultures to ferment sun-dried tea leaves during artificially inoculated SSF. According to the major enzymatic activities and quality components content (tea polyphenols, catechins, amino acids, soluble sugar, and theabrownin), it was found that Aspergillus fumigatus M1 had a significant effect on the transformation of polyphenols and Bacillus subtilis X4 could enhance the ability of bioconversion of strain M1. Strain X4 and M1 may be the core microbes responsible for developing these biochemical components of QZBT, as the values of quality components of tea leaves fermented by these two strains for 6 days was very close to that of the sample naturally fermented for 35 days in the tea factory. The results could be significant in developing industrial starters for the manufacture of QZBT and stabilizing the product quality of different batches.

5.
J Food Sci ; 88(6): 2339-2352, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138542

RESUMO

Umami amino acids inhibit the bitter and astringent taste presentation of catechins, which is essential for the taste regulation of green tea. In this study, the concentration-intensity trends and taste threshold properties of major catechin monomers were investigated using an electronic tongue. The taste and chemical structure interactions between the ester-type catechins and theanine, glutamic acid (Glu), and aspartic acid (Asp) were further analyzed by in vitro simulation and analysis of their reciprocal chemical structures. The results showed that the bitterness and astringency of the major catechin monomers increased with increasing concentration, and their bitterness thresholds and their electron tongue response values were higher than those of the astringent values, while the bitterness and astringency of the ester-type catechins were higher than those of the nonester type. The three amino acids inhibited the bitterness intensity of ester catechins (epigallocatechin gallate, epicatechin gallate, and gallocatechin gallate) at different concentrations, and the effects on the astringency intensity of ester catechins were complicated. Ester catechins significantly enhanced the umami intensity of theanine, Glu, and Asp at different concentrations. Their reciprocal chemical structures showed that hydrogen bonding was the main interaction force between the three ester-type catechins and the umami amino acids, with theanine and Glu interacting more strongly with ester-type catechins than Asp, and Glu having a lower binding energy to ester-type catechins, which bonded more easily.


Assuntos
Catequina , Chá , Chá/química , Catequina/análise , Aminoácidos , Nariz Eletrônico , Adstringentes/análise , Ácido Glutâmico
6.
Food Chem ; 395: 133549, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35777211

RESUMO

Withering is a key process that affects the aroma of Keemun black tea (KBT). In this study, the aroma composition of KBT through natural withering, sun withering, and warm-air withering was analysed using gas chromatography-mass spectrometry. The results revealed significant differences in the three samples. Gas chromatography-olfactometry and aroma extract dilution analysis were performed with screening through a relative odour activity value (rOAV) > 1. In total, 11 aroma-active compounds (geraniol, (Z)-4-heptenal, 1-octen-3-ol, (E)-ß-ionone, 3-methylbutanal, linalool, ß-damascenone, (E, E)-2,4-decadienal, methional, (E, E)-2,4-nonadienal, and (E)-2-nonenal) were found to be responsible for the differences in aroma caused by different withering methods. Linalool (rOAV, 161) and geraniol (rOAV, 785) were responsible for the higher flowery and fruity aromas when sun withering was applied, whereas methional (rOAV, 124) contributed to the intense roasty aroma when warm-air withering was employed. Moreover, our results were verified by quantitative descriptive analysis and addition experiments.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Camellia sinensis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Olfatometria/métodos , Chá/química , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA