Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 39(1): 148-59, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23890069

RESUMO

Two models are proposed to explain Notch function during helper T (Th) cell differentiation. One argues that Notch instructs one Th cell fate over the other, whereas the other posits that Notch function is dictated by cytokines. Here we provide a detailed mechanistic study investigating the role of Notch in orchestrating Th cell differentiation. Notch neither instructed Th cell differentiation nor did cytokines direct Notch activity, but instead, Notch simultaneously regulated the Th1, Th2, and Th17 cell genetic programs independently of cytokine signals. In addition to regulating these programs in both polarized and nonpolarized Th cells, we identified Ifng as a direct Notch target. Notch bound the Ifng CNS-22 enhancer, where it synergized with Tbet at the promoter. Thus, Notch acts as an unbiased amplifier of Th cell differentiation. Our data provide a paradigm for Notch in hematopoiesis, with Notch simultaneously orchestrating multiple lineage programs, rather than restricting alternate outcomes.


Assuntos
Citocinas/imunologia , Receptor Notch1/imunologia , Transdução de Sinais/imunologia , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Animais , Sequência de Bases , Células Cultivadas , Citocinas/metabolismo , Citometria de Fluxo , Expressão Gênica/imunologia , Interações Hospedeiro-Parasita/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Ligação Proteica/imunologia , Receptor Notch1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Células Th1/metabolismo , Células Th1/parasitologia , Células Th17/metabolismo , Células Th2/metabolismo , Trichuris/imunologia , Trichuris/fisiologia
2.
Proc Natl Acad Sci U S A ; 116(16): 7941-7950, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30944222

RESUMO

Studies over the past decade have revealed a central role for innate immune sensors in autoimmune and autoinflammatory diseases. cGAS, a cytosolic DNA sensor, detects both foreign and host DNA and generates a second-messenger cGAMP, which in turn binds and activates stimulator of IFN genes (STING), leading to induction of type I interferons and inflammatory cytokines. Recently, gain-of-function mutations in STING have been identified in patients with STING-associated vasculopathy with onset in infancy (SAVI). SAVI patients present with early-onset systemic inflammation and interstitial lung disease, resulting in pulmonary fibrosis and respiratory failure. Here, we describe two independent SAVI mouse models, harboring the two most common mutations found in patients. A direct comparison of these strains reveals a hierarchy of immune abnormalities, lung inflammation and fibrosis, which do not depend on either IFN-α/ß receptor signaling or mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necroptotic cell death pathways. Furthermore, radiation chimera experiments reveal how bone marrow from the V154M mutant mice transfer disease to the WT host, whereas the N153S does not, indicating mutation-specific disease outcomes. Moreover, using radiation chimeras we find that T cell lymphopenia depends on T cell-intrinsic expression of the SAVI mutation. Collectively, these mutant mice recapitulate many of the disease features seen in SAVI patients and highlight mutation-specific functions of STING that shed light on the heterogeneity observed in SAVI patients.


Assuntos
Modelos Animais de Doenças , Interferon Tipo I/metabolismo , Doenças Vasculares , Animais , Morte Celular/imunologia , Citocinas/metabolismo , Mutação com Ganho de Função , Inflamação/imunologia , Inflamação/fisiopatologia , Camundongos , Doenças Vasculares/genética , Doenças Vasculares/imunologia , Doenças Vasculares/fisiopatologia
3.
J Proteome Res ; 20(7): 3689-3700, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34085531

RESUMO

Novel therapies and biomarkers are needed for the treatment of acute ischemic stroke (AIS). This study aimed to provide comprehensive insights into the dynamic proteome changes and underlying molecular mechanisms post-ischemic stroke. TMT-coupled proteomic analysis was conducted on mouse brain cortex tissue from five time points up to 4 weeks poststroke in the distal hypoxic-middle cerebral artery occlusion (DH-MCAO) model. We found that nearly half of the detected proteome was altered following stroke, but only ∼8.6% of the changes were at relatively large scales. Clustering on the changed proteome defined four distinct expression patterns characterized by temporal and quantitative changes in innate and adaptive immune response pathways and cytoskeletal and neuronal remodeling. Further analysis on a subset of 309 "top hits", which temporally responded to stroke with relatively large and sustained changes, revealed that they were mostly secreted proteins, highly correlated to different cortical cytokines, and thereby potential pharmacodynamic biomarker candidates for inflammation-targeting therapies. Closer examination of the top enriched neurophysiologic pathways identified 57 proteins potentially associated with poststroke recovery. Altogether, our study generated a rich dataset with candidate proteins worthy of further validation as biomarkers and/or therapeutic targets for stroke. The proteomics data are available in the PRIDE Archive with identifier PXD025077.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Proteoma/genética , Proteômica
4.
Am J Med Genet A ; 182(8): 1906-1912, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32573057

RESUMO

Leukodystrophies are a heterogeneous group of heritable disorders characterized by abnormal brain white matter signal on magnetic resonance imaging (MRI) and primary involvement of the cellular components of myelin. Previous estimates suggest the incidence of leukodystrophies as a whole to be 1 in 7,000 individuals, however the frequency of specific diagnoses relative to others has not been described. Next generation sequencing approaches offer the opportunity to redefine our understanding of the relative frequency of different leukodystrophies. We assessed the relative frequency of all 30 leukodystrophies (associated with 55 genes) in more than 49,000 exomes. We identified a relatively high frequency of disorders previously thought of as very rare, including Aicardi Goutières Syndrome, TUBB4A-related leukodystrophy, Peroxisomal biogenesis disorders, POLR3-related Leukodystrophy, Vanishing White Matter, and Pelizaeus-Merzbacher Disease. Despite the relative frequency of these conditions, carrier-screening laboratories regularly test only 20 of the 55 leukodystrophy-related genes, and do not test at all, or test only one or a few, genes for some of the higher frequency disorders. Relative frequency of leukodystrophies previously considered very rare suggests these disorders may benefit from expanded carrier screening.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Doenças Desmielinizantes/genética , Malformações do Sistema Nervoso/genética , Doença de Pelizaeus-Merzbacher/genética , RNA Polimerase III/genética , Tubulina (Proteína)/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Doenças Desmielinizantes/epidemiologia , Doenças Desmielinizantes/patologia , Exoma/genética , Feminino , Predisposição Genética para Doença , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças por Armazenamento dos Lisossomos/epidemiologia , Doenças por Armazenamento dos Lisossomos/genética , Imageamento por Ressonância Magnética , Masculino , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Malformações do Sistema Nervoso/patologia , Doença de Pelizaeus-Merzbacher/epidemiologia , Doença de Pelizaeus-Merzbacher/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
5.
Genes Dev ; 23(14): 1665-76, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19605688

RESUMO

Precise control of the timing and magnitude of Notch signaling is essential for the normal development of many tissues, but the feedback loops that regulate Notch are poorly understood. Developing T cells provide an excellent context to address this issue. Notch1 signals initiate T-cell development and increase in intensity during maturation of early T-cell progenitors (ETP) to the DN3 stage. As DN3 cells undergo beta-selection, during which cells expressing functionally rearranged TCRbeta proliferate and differentiate into CD4(+)CD8(+) progeny, Notch1 signaling is abruptly down-regulated. In this report, we investigate the mechanisms that control Notch1 expression during thymopoiesis. We show that Notch1 and E2A directly regulate Notch1 transcription in pre-beta-selected thymocytes. Following successful beta-selection, pre-TCR signaling rapidly inhibits Notch1 transcription via signals that up-regulate Id3, an E2A inhibitor. Consistent with a regulatory role for Id3 in Notch1 down-regulation, post-beta-selected Id3-deficient thymocytes maintain Notch1 transcription, whereas enforced Id3 expression decreases Notch1 expression and abrogates Notch1-dependent T-cell survival. These data provide new insights into Notch1 regulation in T-cell progenitors and reveal a direct link between pre-TCR signaling and Notch1 expression during thymocyte development. Our findings also suggest new strategies for inhibiting Notch1 signaling in pathologic conditions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/fisiologia , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Regulação para Baixo , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo , Receptor Notch1/genética
6.
J Clin Invest ; 134(4)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357922

RESUMO

Chronic and elevated levels of the antiviral cytokine IFN-α in the brain are neurotoxic. This is best observed in patients with genetic cerebral interferonopathies such as Aicardi-Goutières syndrome. Cerebral interferonopathies typically manifest in early childhood and lead to debilitating disease and premature death. There is no cure for these diseases with existing treatments largely aimed at managing symptoms. Thus, an effective therapeutic strategy is urgently needed. Here, we investigated the effect of antisense oligonucleotides targeting the murine IFN-α receptor (Ifnar1 ASOs) in a transgenic mouse model of cerebral interferonopathy. Intracerebroventricular injection of Ifnar1 ASOs into transgenic mice with brain-targeted chronic IFN-α production resulted in a blunted cerebral interferon signature, reduced neuroinflammation, restoration of blood-brain barrier integrity, absence of tissue destruction, and lessened neuronal damage. Remarkably, Ifnar1 ASO treatment was also effective when given after the onset of neuropathological changes, as it reversed such disease-related features. We conclude that ASOs targeting the IFN-α receptor halt and reverse progression of IFN-α-mediated neuroinflammation and neurotoxicity, opening what we believe to be a new and promising approach for the treatment of patients with cerebral interferonopathies.


Assuntos
Interferon Tipo I , Doenças do Sistema Nervoso , Pré-Escolar , Humanos , Camundongos , Animais , Doenças Neuroinflamatórias , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Interferon-alfa/genética , Camundongos Transgênicos
7.
ACS Med Chem Lett ; 15(5): 714-721, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38746903

RESUMO

We herein report the discovery, synthesis, and evolution of a series of indazoles and azaindazoles as CNS-penetrant IRAK4 inhibitors. Described is the use of structure-based and property-based drug design strategically leveraged to guide the property profile of a key series into a favorable property space while maintaining potency and selectivity. Our rationale that led toward functionalities with potency improvements, CNS-penetration, solubility, and favorable drug-like properties is portrayed. In vivo evaluation of an advanced analogue showed significant, dose-dependent modulation of inflammatory cytokines in a mouse model. In pursuit of incorporating a highly engineered bridged ether that was crucial to metabolic stability in this series, significant synthetic challenges were overcome to enable the preparation of the analogues.

8.
J Med Chem ; 67(6): 4676-4690, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38467640

RESUMO

Interleukin receptor-associated kinase 4 (IRAK4) is a key node of signaling within the innate immune system that regulates the production of inflammatory cytokines and chemokines. The presence of damage-associated molecular patterns (DAMPs) after tissue damage such as stroke or traumatic brain injury (TBI) initiates signaling through the IRAK4 pathway that can lead to a feed-forward inflammatory loop that can ultimately hinder patient recovery. Herein, we describe the first potent, selective, and CNS-penetrant IRAK4 inhibitors for the treatment of neuroinflammation. Lead compounds from the series were evaluated in CNS PK/PD models of inflammation, as well as a mouse model of ischemic stroke. The SAR optimization detailed within culminates in the discovery of BIO-7488, a highly selective and potent IRAK4 inhibitor that is CNS penetrant and has excellent ADME properties.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , AVC Isquêmico , Camundongos , Animais , Humanos , Transdução de Sinais , Citocinas , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
9.
J Med Chem ; 67(10): 8383-8395, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38695469

RESUMO

Interleukin receptor associated kinase 4 (IRAK4) plays an important role in innate immune signaling through Toll-like and interleukin-1 receptors and represents an attractive target for the treatment of inflammatory diseases and cancer. We previously reported the development of a potent, selective, and brain-penetrant imidazopyrimidine series of IRAK4 inhibitors. However, lead molecule BIO-7488 (1) suffered from low solubility which led to variable PK, compound accumulation, and poor in vivo tolerability. Herein, we describe the discovery of a series of pyridone analogs with improved solubility which are highly potent, selective and demonstrate desirable PK profiles including good oral bioavailability and excellent brain penetration. BIO-8169 (2) reduced the in vivo production of pro-inflammatory cytokines, was well tolerated in safety studies in rodents and dog at margins well above the predicted efficacious exposure and showed promising results in a mouse model for multiple sclerosis.


Assuntos
Encéfalo , Quinases Associadas a Receptores de Interleucina-1 , Inibidores de Proteínas Quinases , Animais , Cães , Masculino , Camundongos , Ratos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Descoberta de Drogas , Encefalomielite Autoimune Experimental/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/síntese química , Pirimidinas/uso terapêutico , Relação Estrutura-Atividade
10.
Front Immunol ; 14: 1146699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275914

RESUMO

Introduction: Transcriptional activation depends on the interplay of chromatin modifiers to establish a permissive epigenetic landscape. While histone 3 lysine 9 (H3K9) methylation has long been associated with gene repression, there is limited evidence to support a role for H3K9 demethylases in gene activation. Methods: We leveraged knockdown and overexpression of JMJD2d / Kdm4d in mouse embryonic fibroblasts, coupled with extensive epigenomic analysesm to decipher the role of histone 3 lysine 9 demethylases in the innate immune response. Results: Here we describe the H3K9 demethylase Kdm4d/JMJD2d as a positive regulator of type I interferon responses. In mouse embryonic fibroblasts (MEFs), depletion of JMJD2d attenuates the transcriptional response, conferring increased viral susceptibility, while overexpression of the demethylase results in more robust IFN activation. We find that the underlying mechanism of JMJD2d in type I interferon responses consists of an effect both on the transcription of enhancer RNAs (eRNAs) and on dynamic H3K9me2 at associated promoters. In support of these findings, we establish that JMJD2d is associated with enhancer regions throughout the genome prior to stimulation but is redistributed to inducible promoters in conjunction with transcriptional activation. Discussion: Taken together, our data reveal JMJD2d as a chromatin modifier that connects enhancer transcription with promoter demethylation to modulate transcriptional responses.


Assuntos
Histona Desmetilases , Interferon Tipo I , Animais , Camundongos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Interferon Tipo I/genética , Lisina/genética , Fibroblastos/metabolismo , Cromatina/genética
11.
Nat Genet ; 55(6): 927-938, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37231097

RESUMO

Compelling evidence suggests that human cognitive function is strongly influenced by genetics. Here, we conduct a large-scale exome study to examine whether rare protein-coding variants impact cognitive function in the adult population (n = 485,930). We identify eight genes (ADGRB2, KDM5B, GIGYF1, ANKRD12, SLC8A1, RC3H2, CACNA1A and BCAS3) that are associated with adult cognitive function through rare coding variants with large effects. Rare genetic architecture for cognitive function partially overlaps with that of neurodevelopmental disorders. In the case of KDM5B we show how the genetic dosage of one of these genes may determine the variability of cognitive, behavioral and molecular traits in mice and humans. We further provide evidence that rare and common variants overlap in association signals and contribute additively to cognitive function. Our study introduces the relevance of rare coding variants for cognitive function and unveils high-impact monogenic contributions to how cognitive function is distributed in the normal adult population.


Assuntos
Variação Genética , Transtornos do Neurodesenvolvimento , Humanos , Adulto , Animais , Camundongos , Predisposição Genética para Doença , Fenótipo , Cognição , Proteínas de Transporte/genética , Proteínas Nucleares/genética
12.
Mol Genet Metab Rep ; 33: 100924, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36262748

RESUMO

Objective: To estimate the incidence of Aicardi-Goutières syndrome (AGS) and potassium sodium-activated channel subfamily T member 1 (KCNT1)-related epilepsy in Denmark and to characterize the patients diagnosed with AGS and KCNT1-related epilepsy. Background: AGS and KCNT1-related epilepsy are 2 distinct rare genetic disorders. Due to the rarity of AGS and KCNT1-related epilepsy, the epidemiology remains unclear. The incidences for these diseases or the carriers with disease-related genetic variants remain unknown. Materials and methods: This is a retrospective, non-interventional, population-based study using aggregate data from the Danish population register and hospital-based patient-level data in Denmark to identify persons with genetically confirmed AGS between January 2010 to December 2020 and KCNT1-related epilepsies between January 2012 to December 2020. Cases of these disorders were identified from in-hospital databases, and pathogenic variants were identified and confirmed by Sanger and/or whole exome (panel-based) sequencing. The incidence of AGS and KCNT1-related epilepsy were estimated in separate statistical analyses. Results: A total of 7 AGS patients were identified. The mean age at AGS diagnosis was 19.4 months (median age 14 months). TREX1 (n < 5) and RNASEH2B (n ≥ 5) genes were reported with confirmed pathogenic variants. The birth incidence of AGS was <0.7600 per 100,000 live births. The average annual incidence rate was calculated as 0.0539 (95% CI: 0.0217-0.1111) per 100,000 persons per year in the total population < 18 years (n = 7); the average annual incidence rate was <0.7538 per 100,000 persons per year (n < 5) in the population < 12 months, and the average annual incidence rate in the population ≥ 12 months and < 18 years was <0.0406 per 100,000 persons per year (n < 5). A total of 14 KCNT1-related epilepsy cases were identified during the study period (n = 5 in 2016, remaining 9 cases in 2013 and 2015). The mean age at diagnosis was 20.6 years (median 19 years) for KCNT1 cases. A total of 8 cases (57.1%) were ≥ 18 years, and 6 (42.9%) were < 18 years at diagnosis. The phenotype autosomal dominant or sporadic sleep-related hypermotor epilepsy (ADSHE) (n = 10, 71.4%) was most reported; the remaining 4 cases had either epilepsy of infancy with migrating focal seizures (EIMFS) or an unclassifiable developmental and epileptic encephalopathy (DEE). The birth incidence of KCNT1-related epilepsy was ≤1.1205 per 100,000 live births. The average annual incidence rates per 100,000 persons per year during the study period were 0.0431 (95% confidence interval [CI]: 0.0236-0.0723; n = 14) in the overall population ≤ 50 years, 0.0568 (95% CI: 0.0209-0.1237; n = 6) in the population < 18 years, and 0.0365 (95% CI: 0.0157-0.0718; n = 8) in the population ≥ 18 and ≤ 50 years. There were 3 families with at least 2 cases diagnosed with KCNT1-related epilepsies (on average 3.3 cases per family), indicating 10 cases in total within the 3 families. All KCNT1 cases of ADSHE phenotype came from the 3 families. The higher incidence of older ages and ADSHE cases compared with previous KCNT1 studies is likely due to the capture of prevalent and familial previously undiagnosed cases. Excluding these family cases, the average annual incidence was 0.0123 (95% CI: 0.0034-0.0315, n = 4) per 100,000 persons per year in the population ≤ 50 years during 2012-2020. Conclusions: AGS and KCNT1-related epilepsy are particularly rare diseases. The annual average incidence rate of AGS was 0.0539 per 100,000 persons per year in the population < 18 years and birth incidence was <0.7600 per 100,000 live births during 2010-2020. The average annual incidence rate of KCNT1-related epilepsy was 0.0431 per 100,000 persons per year in the population ≤ 50 years and the birth incidence was ≤1.1205 per 100,000 live births during 2012-2020. Given similar healthcare systems and genetic pools, these findings may provide insight on the incidence of these rare diseases in the Nordics.

13.
J Exp Med ; 202(8): 1037-42, 2005 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-16230473

RESUMO

Notch ligands and receptors have been implicated in helper T cell (Th cell) differentiation. Whether Notch signals are involved in differentiation of T helper type 1 (Th1) cells, Th2 cells, or both, however, remains unresolved. To clarify the role of Notch in Th cell differentiation, we generated mice that conditionally inactivate Notch signaling in mature T cells. Mice that lack Notch signaling in CD4+ T cells fail to develop a protective Th2 cell response against the gastrointestinal helminth Trichuris muris. In contrast, they exhibit effective Th1 cell responses and are able to control Leishmania major infection. These data demonstrate that Notch signaling is a regulator of type 2 immunity.


Assuntos
Diferenciação Celular/imunologia , Imunidade Celular/imunologia , Receptores Notch/metabolismo , Transdução de Sinais/imunologia , Células Th2/metabolismo , Animais , Southern Blotting , Linfócitos T CD4-Positivos/imunologia , Primers do DNA , Citometria de Fluxo , Proteínas de Fluorescência Verde , Leishmania/imunologia , Camundongos , Camundongos Transgênicos , Trichuris/imunologia
14.
Acta Neuropathol Commun ; 9(1): 140, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412701

RESUMO

The microglial reaction is a hallmark of neurodegenerative conditions, and elements thereof may exert differential effects on disease progression, either worsening or ameliorating severity. In amyotrophic lateral sclerosis (ALS), a syndrome characterized by cytoplasmic aggregation of TDP-43 protein and atrophy of motor neurons in the cortex and spinal cord, the transcriptomic signatures of microglia during disease progression are incompletely understood. Here, we performed longitudinal RNAseq analysis of cortical and spinal cord microglia from rNLS8 mice, in which doxycycline-regulatable expression of human TDP-43 (hTDP-43) in the cytoplasm of neurons recapitulates many features of ALS. Transgene suppression in rNLS8 mice leads to functional, anatomical and electrophysiological resolution that is dependent on a microglial reaction that is concurrent with recovery rather than disease onset. We identified basal differences between the gene expression profiles of microglia dependent on localization in spinal cord or cortex. Microglia subjected to chronic hTDP-43 overexpression demonstrated transcriptomic changes in both locations. We noted strong upregulation of Apoe, Axl, Cd63, Clec7a, Csf1, Cst7, Igf1, Itgax, Lgals3, Lilrb4, Lpl and Spp1 during late disease and recovery. Importantly, we identified a distinct suite of differentially expressed genes associated with each phase of disease progression and recovery. Differentially expressed genes were associated with chemotaxis, phagocytosis, inflammation, and production of neuroprotective factors. These data provide new insights into the microglial reaction in TDP-43 proteinopathy. Genes differentially expressed during progression and recovery may provide insight into a unique instance in which the microglial reaction promotes functional recovery after neuronal insult.


Assuntos
Esclerose Lateral Amiotrófica/genética , Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/genética , Microglia/metabolismo , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Córtex Cerebral/citologia , Quimiotaxia/genética , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Estudos Longitudinais , Camundongos , Camundongos Transgênicos , Doenças Neuroinflamatórias/genética , Neuroproteção/genética , Fagocitose , RNA-Seq , Recuperação de Função Fisiológica , Medula Espinal/citologia , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismo
15.
J Med Chem ; 64(20): 15402-15419, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34653340

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1) is one of the key mediators of the cellular stress response that regulates inflammation and apoptosis. To probe the therapeutic value of modulating this pathway in preclinical models of neurological disease, we further optimized the profile of our previously reported inhibitor 3. This effort led to the discovery of 32, a potent (cell IC50 = 25 nM) and selective ASK1 inhibitor with suitable pharmacokinetic and brain penetration (rat Cl/Clu = 1.6/56 L/h/kg and Kp,uu = 0.46) for proof-of-pharmacology studies. Specifically, the ability of 32 to inhibit ASK1 in the central nervous system (CNS) was evaluated in a human tau transgenic (Tg4510) mouse model exhibiting elevated brain inflammation. In this study, transgenic animals treated with 32 (at 3, 10, and 30 mg/kg, BID/PO for 4 days) showed a robust reduction of inflammatory markers (e.g., IL-1ß) in the cortex, thus confirming inhibition of ASK1 in the CNS.


Assuntos
Encéfalo/efeitos dos fármacos , Descoberta de Drogas , Inflamação/tratamento farmacológico , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Humanos , Inflamação/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Ratos , Relação Estrutura-Atividade
16.
Global Spine J ; 10(8): 958-963, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32875833

RESUMO

STUDY DESIGN: Retrospective, single institution, multisurgeon case control series. OBJECTIVE: To determine whether there are differences in reoperation rates or outcomes for patients undergoing 2-level posterolateral fusion (PLF) augmented by a transforaminal lumbar interbody fusion (TLIF) at only one of the levels or at both. METHODS: A total of 416 patients were identified who underwent 2-level PLF with a TLIF at either one of those levels (n = 183) or at both (n = 233) with greater than 1-year follow-up. Demographic, surgical, radiographic, and clinical data was reviewed for each patient. These included age, sex, race, body mass index, smoking status, Charleston Comorbidity Index, operative time, estimated blood loss, length of stay, and patient-reported outcome measures. RESULTS: Each cohort underwent 24 reoperations. Although the number of overall reoperations was not significantly different (P > .05), among the reoperation types, there were significantly more reoperations for adjacent segment disease in the 2-level group compared to the 1-level group (19 vs 12, P = .04). There was no difference in reoperation for pseudarthrosis between the groups (P > .05). Although both groups experienced significant improvements in Oswestry Disability Index (P < .001) and Short Form-12 health questionnaire (P < .001), there were no differences between improvements for 1- versus 2-level cohorts. CONCLUSIONS: For patients undergoing 2-level PLF in the setting of a TLIF, using a TLIF at one versus both levels does not seem to influence reoperation rates or outcomes. However, reoperation rates for adjacent segment disease are increased in the setting of a 2-level PLF augmented by a 2-level TLIF.

17.
Cell Rep ; 28(2): 472-485.e5, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291582

RESUMO

The NuRD complex contains both chromatin remodeling and histone deacetylase activities. Mice lacking the MTA2 subunit of NuRD show developmental defects in pro-B, pre-B, immature B, and marginal zone B cells, and abnormal germinal center B cell differentiation during immune responses. Mta2 inactivation also causes a derepression of Igll1 and VpreB1 genes in pre-B cells. Furthermore, MTA2/NuRD interacts directly with AIOLOS/IKAROS and shows a striking overlap with AIOLOS/IKAROS target genes in human pre-B cells, suggesting a functional inter-dependence between MTA2/NuRD and AIOLOS. Mechanistically, MTA2 deficiency in mice leads to increased H3K27 acetylation at both Igll1 and VpreB1 promoters. Gene profiling analyses also identify distinct MTA2-dependent transcription programs in pro-B and pre-B cells. In addition, we find a strong synergy between MTA2 and OCA-B in repressing Igll1 and VpreB1 at the pre-B cell stage, and in regulating both the pre-B to immature B transition and splenic B cell development.


Assuntos
Linfócitos B/imunologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Células Precursoras de Linfócitos B/imunologia , Proteínas Repressoras/genética , Transativadores/genética , Animais , Humanos , Camundongos
18.
Nat Neurosci ; 21(3): 329-340, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29463850

RESUMO

Though motor neurons selectively degenerate in amyotrophic lateral sclerosis, other cell types are likely involved in this disease. We recently generated rNLS8 mice in which human TDP-43 (hTDP-43) pathology could be reversibly induced in neurons and expected that microglia would contribute to neurodegeneration. However, only subtle microglial changes were detected during disease in the spinal cord, despite progressive motor neuron loss; microglia still reacted to inflammatory triggers in these mice. Notably, after hTDP-43 expression was suppressed, microglia dramatically proliferated and changed their morphology and gene expression profiles. These abundant, reactive microglia selectively cleared neuronal hTDP-43. Finally, when microgliosis was blocked during the early recovery phase using PLX3397, a CSF1R and c-kit inhibitor, rNLS8 mice failed to regain full motor function, revealing an important neuroprotective role for microglia. Therefore, reactive microglia exert neuroprotective functions in this amyotrophic lateral sclerosis model, and definition of the underlying mechanism could point toward novel therapeutic strategies.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/patologia , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/patologia , Aminopiridinas/farmacologia , Animais , Perfilação da Expressão Gênica , Gliose/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Músculo Esquelético/patologia , Mutação/genética , Células Mieloides/patologia , Pirróis/farmacologia , Recuperação de Função Fisiológica , Medula Espinal/patologia , Superóxido Dismutase-1/genética
19.
PLoS One ; 11(9): e0162758, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27618690

RESUMO

Systemic sclerosis (SSc) is a chronic autoimmune disorder that can result in extensive tissue damage in the skin and, in advanced cases, internal organs. Vasculopathy, aberrant immune activation, and tissue fibrosis are three hallmarks of the disease that have been identified, with vasculopathy and aberrant immunity being amongst the earliest events. However, a mechanistic link between these processes has not been established. Here, we have identified a novel role of platelet derived growth factor-BB (PDGF-BB)/PDGFRß activation in combination with dermal injury induced by bleomycin as a driver of early, aberrant expression of interferon stimulatory genes (ISGs) and inflammatory monocyte infiltration. Activation of PDGFRß in combination with bleomycin-induced dermal injury resulted in increased dermal thickness, vascular density, monocyte/macrophage infiltration, and exacerbation of tissue injury. Many of these features were dependent on IFNAR-signaling, and an increase in the number of interferon-beta (IFN-ß) producing monocytes cells was found in the skin lesions. Taken together, these results identify a novel link between PDGFRß activation, and Type I IFN-driven vascular maintenance and monocyte/macrophage cell recruitment, and provide a potential explanation linking key features of SSc that were previously thought to be unrelated.


Assuntos
Vasos Sanguíneos/patologia , Modelos Animais de Doenças , Interferon Tipo I/fisiologia , Monócitos/patologia , Proteínas Proto-Oncogênicas c-sis/fisiologia , Escleroderma Sistêmico/patologia , Dermatopatias/patologia , Animais , Becaplermina , Bleomicina/farmacologia , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
20.
J Exp Med ; 212(3): 297-306, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25687282

RESUMO

The fidelity of T cell immunity depends greatly on coupling T cell receptor signaling with specific T cell effector functions. Here, we describe a chromatin-based mechanism that enables integration of TCR specificity into definite T cell lineage commitment. Using natural killer T cells (iNKT cell) as a model of a T cell subset that differentiates in response to specific TCR signaling, we identified a key role of histone H3 lysine 27 trimethylation (H3K27me3) in coupling iNKT cell TCR specificity with the generation of iNKT cells. We found that the Zbtb16/PLZF gene promoter that drives iNKT cell differentiation possesses a bivalent chromatin state characterized by the simultaneous presence of negative and positive H3K27me3 and H3K4me3 modifications. Depletion of H3K27me3 at the Zbtb16/PLZF promoter leads to uncoupling of iNKT cell development from TCR specificity and is associated with accumulation of iNKT-like CD4(+) cells that express a non-iNKT cell specific T cell repertoire. In turn, stabilization of H3K27me3 leads to a drastic reduction of the iNKT cell population. Our data suggest that H3K27me3 levels at the bivalent Zbtb16/PLZF gene define a threshold enabling precise coupling of TCR specificity to lineage commitment.


Assuntos
Histonas/metabolismo , Células T Matadoras Naturais/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Animais , Antígenos CD4/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Lisina/metabolismo , Metilação , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células T Matadoras Naturais/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Proteína com Dedos de Zinco da Leucemia Promielocítica , Receptores de Antígenos de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA