Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2315730121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557188

RESUMO

Microdroplets are a class of soft matter that has been extensively employed for chemical, biochemical, and industrial applications. However, fabricating microdroplets with largely controllable contact-area shape and apparent contact angle, a key prerequisite for their applications, is still a challenge. Here, by engineering a type of surface with homocentric closed-loop microwalls/microchannels, we can achieve facile size, shape, and contact-angle tunability of microdroplets on the textured surfaces by design. More importantly, this class of surface topologies (with universal genus value = 1) allows us to reveal that the conventional Gibbs equation (widely used for assessing the edge effect on the apparent contact angle of macrodroplets) seems no longer applicable for water microdroplets or nanodroplets (evidenced by independent molecular dynamics simulations). Notably, for the flat surface with the intrinsic contact angle ~0°, we find that the critical contact angle on the microtextured counterparts (at edge angle 90°) can be as large as >130°, rather than 90° according to the Gibbs equation. Experiments show that the breakdown of the Gibbs equation occurs for microdroplets of different types of liquids including alcohol and hydrocarbon oils. Overall, the microtextured surface design and topological wetting states not only offer opportunities for diverse applications of microdroplets such as controllable chemical reactions and low-cost circuit fabrications but also provide testbeds for advancing the fundamental surface science of wetting beyond the Gibbs equation.

2.
J Am Chem Soc ; 146(23): 16314-16323, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38812460

RESUMO

Two-dimensional (2D) metal halide perovskites, such as BA2SnI4 (BA═CH3(CH2)3NH3), exhibit an enhanced charge carrier lifetime in experiments under strain. Experiments suggest that significant compression of the BA molecule, rather than of the inorganic lattice, contributes to this enhancement. To elucidate the underlying physical mechanism, we apply a moderate compressive strain to the entire system and subsequently introduce significant compression to the BA molecules. We then perform ab initio nonadiabatic molecular dynamics simulations of nonradiative electron-hole recombination. We observe that the overall lattice compression reduces atomic motions and decreases nonadiabatic coupling, thereby delaying electron-hole recombination. Additionally, compression of the BA molecules enhances hydrogen bonding between the BA molecules and iodine atoms, which lengthens the Sn-I bonds, distorts the [SnI6]4- octahedra, and suppresses atomic motions further, thus reducing nonadiabatic coupling. Also, the elongated Sn-I bonds and weakened antibonding interactions increase the band gap. Altogether, the compression delays the nonradiative electron-hole recombination by more than a factor of 3. Our simulations provide new and valuable physical insights into how compressive strain, accommodated primarily by the organic ligands, positively influences the optoelectronic properties of 2D layered halide perovskites, offering a promising pathway for further performance improvements.

3.
Phys Chem Chem Phys ; 26(22): 16378-16387, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38805360

RESUMO

Nonlinear optical (NLO) materials are of great importance in modern optics and industry because of their intrinsic capability of wavelength conversion. Bandgap is a key property of NLO crystals. In recent years, machine learning (ML) has become a powerful tool to predict the bandgaps of compounds before synthesis. However, the shortage of available experimental data of NLO crystals poses a significant challenge for the exploration of new NLO materials using ML. In this work, we proposed a new multi-fidelity ML approach based on the multilevel descriptors developed by us (Z.-Y. Zhang, X. Liu, L. Shen, L. Chen and W.-H. Fang, J. Phys. Chem. C, 2021, 125, 25175-25188) and the gradient boosting regression tree algorithm. The calculated and experimental bandgaps of NLO crystals were collected as the low- and high-fidelity labels, respectively. The experimental values were predicted based on chemical compositions of crystals without prior knowledge about crystal structures. The multi-fidelity ML model overcame the performance of single-fidelity predictor. Furthermore, it was observed that less accurate predictions on the low-fidelity label may result in more accurate prediction on the high-fidelity label, at least in the present case. Using the multi-fidelity ML model with the best performance in this work, the mean absolute error on the test set of experimental bandgaps was 0.293 eV, which is smaller than that using the single-fidelity model (0.355 eV). It is far from perfect but accurate enough as an effective computational tool in the first step to discover novel NLO materials.

4.
J Phys Chem A ; 128(17): 3311-3320, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38654690

RESUMO

Herein, we employed linear-response time-dependent functional theory nonadiabatic dynamic simulations to explore the photoinduced exciton dynamics of a chiral single-walled carbon nanotube CNT(6,5) covalently doped with a 4-nitrobenzyl group (CNT65-NO2). The results indicate that the introduction of a sp3 defect leads to the splitting of the degenerate VBM/VBM-1 and CBM/CBM+1 states. Both the VBM upshift and the CBM downshift are responsible for the experimentally observed redshifted E11* trapping state. The simulations reveal that the photoinduced exciton relaxation dynamics completes within 500 fs, which is consistent with the experimental work. On the other hand, we also conducted the nonadiabatic carrier (electron and hole) dynamic simulations, which completely ignore the excitonic effects. The comparison demonstrates that excitonic effects are indispensable. Deep analyses show that such effects induce several dark states, which play an important role in regulating the photoinduced dynamics of CNT65-NO2. The present work demonstrates the importance of including excitonic effects in simulating photoinduced processes of carbon nanotubes. In addition, it not only rationalizes previous experiments but also provides valuable insights that will help in the future rational design of novel covalently doped carbon nanotubes with superior photoluminescent properties.

5.
J Phys Chem A ; 128(3): 528-538, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38215031

RESUMO

The arylazopyrazole 3pzH as a novel photoswitch exhibits quantitative switching and high thermal stability. In this work, combined electronic structure calculations and ab initio multiple spawning (AIMS) dynamic simulations were performed to systemically investigate the cis ↔ trans photoisomerization mechanism and the chiral preference after photoexcitation of 3pzH to the first excited singlet state (S1). Unlike most of the azoheteroarene photoswitches reported previously, many twisted and T-shaped cis isomers were found to be stable for 3pzH in the S0 state, owing to the moderate interaction between the hydrogen atom and π electrons of the aromatic ring. Two twisted cis isomers with different chirality ((M)-Z1 and (P)-Z1), the most stable T-shaped cis isomer ((T)-Z2), and the most stable planar trans isomer (E2) were selected as the initial structures to carry out the AIMS nonadiabatic dynamic simulations. Following excitation to the S1 state, all of the cis isomers decayed to conical intersection (CI) regions via the same bicycle pedal mechanism, while the evolution of the trans isomers to their CI regions was achieved via rotation around the N═N bond. More importantly, chiral preferences were found for the twisted cis isomers in the S1 state through the AIMS dynamic simulations due to the steric effect and static electronic repulsion. Notably, chirality was also observed in S1 isomerization starting from the planar E2 isomer because of the dynamic effect. After the nonadiabatic transition to the S0 state, the bicycle pedal mechanism was found to play a crucial role in cis ↔ trans photoisomerization. The simulated photoisomerization productivities were generally consistent with past experimental observations. Our calculations not only uncover the underlying reason for the excellent photoswitching properties of 3pzH but also enrich the knowledge of photoisomerization for azoheteroarene photoswitches, which will surely benefit their rational design.

6.
J Phys Chem A ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954640

RESUMO

Machine learning is capable of effectively predicting the potential energies of molecules in the presence of high-quality data sets. Its application in the construction of ground- and excited-state potential energy surfaces is attractive to accelerate nonadiabatic molecular dynamics simulations of photochemical reactions. Because of the huge computational cost of excited-state electronic structure calculations, the construction of a high-quality data set becomes a bottleneck. In the present work, we first built two data sets. One was obtained from surface hopping dynamics simulations at the semiempirical OM2/MRCI level. Another was extracted from the dynamics trajectories at the CASSCF level, which was reported previously. The ground- and excited-state potential energy surfaces of ethylene-bridged azobenzene at the CASSCF computational level were constructed based on the former low-level data set. Although non-neural network machine learning methods can achieve good or modest performance during the training process, only neural network models provide reliable predictions on the latter external test data set. The BPNN and SchNet combined with the Δ-ML scheme and the force term in the loss functions are recommended for dynamics simulations. Then, we performed excited-state dynamics simulations of the photoisomerization of ethylene-bridged azobenzene on machine learning potential energy surfaces. Compared with the lifetimes of the first excited state (S1) estimated at different computational levels, our results on the E isomer are in good agreement with the high-level estimation. However, the overestimation of the Z isomer is unimproved. It suggests that smaller errors during the training process do not necessarily translate to more accurate predictions on high-level potential energies or better performance on nonadiabatic dynamics simulations, at least in the present case.

7.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38661199

RESUMO

Nanoconfined water plays an important role in broad fields of science and engineering. Classical molecular dynamics (MD) simulations have been widely used to investigate water phases under nanoconfinement. The key ingredient of MD is the force field. In this study, we systematically investigated the performance of a recently introduced family of globally optimal water models, OPC and OPC3, and TIP4P/2005 in describing nanoconfined two-dimensional (2D) water ice. Our studies show that the melting points of the monolayer square ice (MSI) of all three water models are higher than the melting points of the corresponding bulk ice Ih. Under the same conditions, the melting points of MSI of OPC and TIP4P/2005 are the same and are ∼90 K lower than that of the OPC3 water model. In addition, we show that OPC and TIP4P/2005 water models are able to form a bilayer AA-stacked structure and a trilayer AAA-stacked structure, which are not the cases for the OPC3 model. Considering the available experimental data and first-principles simulations, we consider the OPC water model as a potential water model for 2D water ice MD studies.

8.
Nano Lett ; 23(21): 10074-10080, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37903224

RESUMO

By stacking monolayer black phosphorus (MBP) with nonpolarized and ferroelectric polarized bilayer hexagonal boron nitride (h-BN), we demonstrate that ferroelectric proximity effects have a strong influence on the charge carrier lifetime of MBP using nonadiabatic (NA) molecular dynamics simulations. Through enhancing the motion of phosphorus atoms, ferroelectric polarization enhances the overlap of electron-hole wave functions that improves NA coupling and decreases the bandgap, resulting in a rapid electron-hole recombination completing within a quarter of nanoseconds, which is two times shorter than that in nonpolarized stackings. In addition to the dominant in-plane Ag2 mode in free-standing MBP, the out-of-plane high-frequency Ag1 and low-frequency interlayer breathing modes presented in the heterojunctions drive the recombination. Notably, the resonance between the breathing mode within bilayer h-BN and the B1u mode of MBP provides an additional nonradiative channel in ferroelectric stackings, further accelerating charge recombination. These findings are crucial for charge dynamics manipulation in two-dimensional materials via substrate ferroelectric proximity effects.

9.
Angew Chem Int Ed Engl ; 63(21): e202402634, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38466630

RESUMO

Molecular ultralong room-temperature phosphorescence (RTP), exhibiting multiple stimuli-responsive characteristics, has garnered considerable attention due to its potential applications in light-emitting devices, sensors, and information safety. This work proposes the utilization of photochemical cascade processes (PCCPs) in molecular crystals to design a stepwise smart RTP switch. By harnessing the sequential dynamics of photo-burst movement (induced by [2+2] photocycloaddition) and photochromism (induced by photogenerated radicals) in a bismuth (Bi)-based metal-organic halide (MOH), a continuous and photo-responsive ultralong RTP can be achieved. Furthermore, utilizing the same Bi-based MOH, diverse application demonstrations, such as multi-mode anti-counterfeiting and information encryption, can be easily implemented. This work thus not only serves as a proof-of-concept for the development of solid-state PCCPs that integrate photosalient effect and photochromism with light-chemical-mechanical energy conversion, but also lays the groundwork for designing new Bi-based MOHs with dynamically responsive ultralong RTP.

10.
Angew Chem Int Ed Engl ; 63(5): e202315300, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38085965

RESUMO

Photocatalytic CO2 reduction is one of the best solutions to solve the global energy crisis and to realize carbon neutralization. The tetradentate phosphine-bipyridine (bpy)-phosphine (PNNP)-type Ir(III) photocatalyst, Mes-IrPCY2, was reported with a high HCOOH selectivity but the photocatalytic mechanism remains elusive. Herein, we employ electronic structure methods in combination with radiative, nonradiative, and electron transfer rate calculations, to explore the entire photocatalytic cycle to either HCOOH or CO, based on which a new mechanistic scenario is proposed. The catalytic reduction reaction starts from the generation of the precursor metal-to-ligand charge transfer (3 MLCT) state. Subsequently, the divergence happens from the 3 MLCT state, the single electron transfer (SET) and deprotonation process lead to the formation of one-electron-reduced species and Ir(I) species, which initiate the reduction reaction to HCOOH and CO, respectively. Interestingly, the efficient occurrence of proton or electron transfer reduces barriers of critical steps. In addition, nonadiabatic transitions play a nonnegligible role in the cycle. We suggest a lower free-energy barrier in the reaction-limiting step and the very efficient SET in 3 MLCT are cooperatively responsible for a high HCOOH selectivity. The gained mechanistic insights could help chemists to understand, regulate, and design photocatalytic CO2 reduction reaction of similar function-integrated molecular photocatalyst.

11.
J Am Chem Soc ; 145(12): 6888-6898, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920260

RESUMO

Light-driven molecular motors have generated considerable interest due to their potential applications in material and biological systems. Recently, Greb and Lehn reported a new class of molecular motors, chiral N-alkyl imines, which undergo unidirectional rotation induced by light and heat. The mechanism of unidirectional motion in molecular motors containing a C═N group has been assumed to consist of photoinduced torsion about the double bond. In this work, we present a computational study of the photoisomerization dynamics of a chiral N-alkyl imine motor. We find that the location and energetics of minimal energy conical intersections (MECIs) alone are insufficient to understand the mechanism of the motor. Furthermore, a key part of the mechanism consists of out-of-plane distortions of the N atom (followed by isomerization about the double bond). Dynamic effects and out-of-plane distortions are critical to understand the observed (rather low) quantum yield for photoisomerization. Our results provide hints as to how the photoisomerization quantum yield might be increased, improving the efficiency of this class of molecular motors.

12.
J Am Chem Soc ; 145(47): 25887-25893, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966512

RESUMO

Ultrafast charge and spin dynamics have immense effects on the applications of topological insulators (TIs). By performing spin-adiabatic nonadiabatic molecular dynamics simulations in the presence of electron-phonon (e-ph) and spin-phonon couplings, we investigate temperature-dependent intra- and interband charge and spin relaxation dynamics via the bulk and surface paths in the three-dimensional TI Bi2Te3. The e-ph coupling dominates charge relaxation in the bulk path, and the relaxation rate is positively correlated with temperature due to the large energy gaps and weak spin polarization. Conversely, the relaxation dynamics exhibits an opposite temperature dependence in the surface path because of electron re-excitation and spin mismatching induced by spin-phonon coupling, which arises from small energy gaps and strong spin polarization. The two mechanisms rationalize the charge carriers being long-lived in the bulk and surface phases at low and room temperature, respectively. Additionally, strong thermal fluctuations of the topological states' magnetic moments destroy the spin-momentum locking and trigger backscattering at room temperature.

13.
J Am Chem Soc ; 145(1): 476-486, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36541604

RESUMO

Identifying photolysis and photothermolysis during a photochemical reaction has remained challenging because of the highly non-equilibrium and ultrafast nature of the processes. Using state-of-the-art ab initio adiabatic and nonadiabatic molecular dynamics, we investigate N2O photodissociation on the reduced rutile TiO2(110) surface and establish its detailed mechanism. The photodecomposition is initiated by electron injection, leading to the formation of a N2O- ion-radical, and activation of the N2O bending and symmetric stretching vibrations. Photothermolysis governs the N2O dissociation when N2O- is short-lived. The dissociation is activated by a combination of the anionic excited state evolution and local heating. A thermal fluctuation drives the molecular acceptor level below the TiO2 band edge, stabilizes the N2O- anion radical, and causes dissociation on a 1 ps timescale. As the N2O- resonance lifetime increases, photolysis becomes dominant since evolution in the anionic excited state activates the bending and symmetric stretching of N2O, inducing the dissociation. The photodecomposition occurs more easily when N2O is bonded to TiO2 through the O rather than N atom. We demonstrate further that a thermal dissociation of N2O can be realized by a rational choice of metal dopants, which enhance p-d orbital hybridization, facilitate electron transfer, and break N2O spontaneously. By investigating the charge dynamics and lifetime, we provide a fundamental atomistic understanding of the competition and synergy between the photocatalytic and photothermocatalytic dissociation of N2O and demonstrate how N2O reduction can be controlled by light irradiation, adsorption configuration, and dopants, enabling the design of high-performance transition-metal oxide catalysts.

14.
J Am Chem Soc ; 145(9): 5297-5309, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826471

RESUMO

Promising alternatives to three-dimensional perovskites, two-dimensional (2D) layered metal halide perovskites have proven their potential in optoelectronic applications due to improved photo- and chemical stability. Nevertheless, photovoltaic devices based on 2D perovskites suffer from poor efficiency owing to unfavorable charge carrier dynamics and energy losses. Focusing on the 2D Dion-Jacobson perovskite phase that is rapidly rising in popularity, we demonstrate that doping of complementary cations into the 3-(aminomethyl)piperidinium perovskite accelerates spontaneous charge separation and slows down charge recombination, both factors improving the photovoltaic performance. Employing ab initio nonadiabatic (NA) molecular dynamics combined with time-dependent density functional theory, we demonstrate that cesium doping broadens the bandgap by 0.4 eV and breaks structural symmetry. Assisted by thermal fluctuations, the symmetry breaking helps to localize electrons and holes in different layers and activates additional vibrational modes. As a result, the charge separation is accelerated. Simultaneously, the charge carrier lifetime grows due to shortened coherence time between the ground and excited states. The established relationships between perovskite composition and charge carrier dynamics provide guidelines toward future material discovery and design of perovskite solar cells.

15.
J Am Chem Soc ; 145(25): 14112-14123, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37334567

RESUMO

Hybrid organic-inorganic perovskites (HOIPs) contain light hydrogen atoms that exhibit significant nuclear quantum effects (NQEs). We demonstrate that NQEs have a strong effect on HOIP geometry and electron-vibrational dynamics at both low and ambient temperatures, even though charges in HOIPs reside on heavy elements. By combining ring-polymer molecular dynamics (MD) and ab initio MD with nonadiabatic MD and time-dependent density functional theory and focusing on the most studied tetragonal CH3NH3PbI3, we show that NQEs increase the disorder and thermal fluctuations through coupling of the light inorganic cations to the heavy inorganic lattice. The additional disorder induces charge localization and decreases electron-hole interactions. As a result, the nonradiative carrier lifetimes are extended by a factor of 3 at 160 K and 1/3 at 330 K. The radiative lifetimes are increased by 40% at both temperatures. The fundamental band gap decreases by 0.10 and 0.03 eV at 160 and 330 K, respectively. By enhancing atomic motions and introducing new vibrational modes, NQEs strengthen electron-vibrational interactions. Decoherence, determined by elastic scattering, accelerates almost by a factor of 2 due to NQEs. However, the nonadiabatic coupling, driving nonradiative electron-hole recombination, decreases because it is more sensitive to structural distortions than atomic motions in HOIPs. This study demonstrates, for the first time, that NQEs should be considered to achieve an accurate understanding of geometry evolution and charge carrier dynamics in HOIPs and provides important fundamental insights for the design of HOIPs and related materials for optoelectronic applications.

16.
J Am Chem Soc ; 145(41): 22826-22835, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796526

RESUMO

A twist angle at a van der Waals junction provides a handle to tune its optoelectronic properties for a variety of applications, and a comprehensive understanding of how the twist modulates electronic structure, interlayer coupling, and carrier dynamics is needed. We employ time-dependent density functional theory and nonadiabatic molecular dynamics to elucidate angle-dependent intervalley carrier transfer and recombination in bilayer WS2. Repulsion between S atoms in twisted configurations weakens interlayer coupling, increases the interlayer distance, and softens layer breathing modes. Twisting has a minor influence on K valleys while it lowers Γ valleys and raises Q valleys because their wave functions are delocalized between layers. Consequently, the reduced energy gaps between the K and Γ valleys accelerate the hole transfer in the twisted structures. Intervalley electron transfer proceeds nearly an order of magnitude faster than hole transfer. The more localized wave functions at K than Q values and larger bandgaps result in smaller nonadiabatic couplings for intervalley recombination, making it 3-4 times slower in twisted than high-symmetry structures. B2g breathing, E2g in-plane, and A1g out-of-plane modes are most active during intervalley carrier transfer and recombination. The faster intervalley transfer and extended carrier lifetimes in twisted junctions are favorable for optoelectronic device performance.

17.
J Am Chem Soc ; 145(2): 811-821, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36596224

RESUMO

The catalytic transformation of N2 to NH3 by transition metal complexes is of great interest and importance but has remained a challenge to date. Despite the essential role of vanadium in biological N2 fixation, well-defined vanadium complexes that can catalyze the conversion of N2 to NH3 are scarce. In particular, a V(NxHy) intermediate derived from proton/electron transfer reactions of coordinated N2 remains unknown. Here, we report a dinitrogen-bridged divanadium complex bearing POCOP (2,6-(tBu2PO)2-C6H3) pincer and aryloxy ligands, which can serve as a catalyst for the reduction of N2 to NH3 and N2H4. Low-temperature protonation and reduction of the dinitrogen complex afforded the first structurally characterized neutral metal hydrazido(2-) species ([V]═NNH2), which mediated 15N2 conversion to 15NH3, indicating that it is a plausible intermediate of the catalysis. DFT calculations showed that the vanadium hydrazido complex [V]═NNH2 possessed a N-H bond dissociation free energy (BDFEN-H) of as high as 59.1 kcal/mol. The protonation of a vanadium amide complex ([V]-NH2) with [Ph2NH2][OTf] resulted in the release of NH3 and the formation of a vanadium triflate complex, which upon reduction under N2 afforded the vanadium dinitrogen complex. These transformations model the final steps of a vanadium-catalyzed N2 reduction cycle. Both experimental and theoretical studies suggest that the catalytic reaction may proceed via a distal pathway to liberate NH3. These findings provide unprecedented insights into the mechanism of N2 reduction related to FeV nitrogenase.


Assuntos
Amônia , Vanádio , Amônia/química , Oxirredução , Nitrogenase/metabolismo , Prótons , Catálise
18.
J Chem Inf Model ; 63(15): 4679-4690, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37489739

RESUMO

The contradictory behaviors in light harvesting and non-photochemical quenching make xanthophyll lutein the most attractive functional molecule in photosynthesis. Despite several theoretical simulations on the spectral properties and excited-state dynamics, the atomic-level photophysical mechanisms need to be further studied and established, especially for an accurate description of geometric and electronic structures of conical intersections for the lowest several electronic states of lutein. In the present work, semiempirical OM2/MRCI and multi-configurational restricted active space self-consistent field methods were performed to optimize the minima and conical intersections in and between the 1Ag-, 2Ag-, 1Bu+, and 1Bu- states. Meanwhile, the relative energies were refined by MS-CASPT2(10,8)/6-31G*, which can reproduce correct electronic state properties as those in the spectroscopic experiments. Based on the above calculation results, we proposed a possible excited-state relaxation mechanism for lutein from its initially populated 1Bu+ state. Once excited to the optically bright 1Bu+ state, the system will propagate along the key reaction coordinate, i.e., the stretching vibration of the conjugated carbon chain. During this period of time, the 1Bu- state will participate in and forms a resonance state between the 1Bu- and 1Bu+ states. Later, the system will rapidly hop to the 2Ag- state via the 1Bu+/2Ag- conical intersection. Finally, the lutein molecule will survive in the 2Ag- state for a relatively long time before it internally converts to the ground state directly or via a twisted S1/S0 conical intersection. Notably, though the photophysical picture may be very different in solvents and proteins, the current theoretical study proposed a promising calculation protocol and also provided many valuable mechanistic insights for lutein and similar carotenoids.

19.
Phys Chem Chem Phys ; 25(9): 6757-6767, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36789502

RESUMO

Coarse-graining (CG) molecular dynamics (MD) simulations are widely used in interpreting experimental observations and predicting assembly morphology as well as collective behaviour but also face the problem of poor accuracy. A main issue is that cross-termed interactions between different CG beads are inadequately parameterized. This work proposes a novel top-down and bottom-up combined strategy to parameterize both self- and cross-termed interactions of zwitterionic phospholipids in water solution based on a piecewise Morse potential describing nonbonded van der Waals interactions. The self-interacting force parameters were optimized by matching experimental density, heat vapourization, and surface tension in a top-down manner, while the cross-termed interactions were optimized by fitting pseudo properties obtained from atomistic simulations in a bottom-up way, including mixing density, intermolecular energy, and radial mixing coefficient. The transferability of the CG force field (FF) was confirmed by reproducing a variety of structural and thermodynamic properties of lipid membranes in both liquid and gel phases. This FF can well depict vesicle self-assembly and vesicle fusion processes. Matching pseudo properties opens a new way to develop CG FF with increased accuracy and transferability.

20.
Phys Chem Chem Phys ; 25(33): 22232-22243, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37577752

RESUMO

Triglycerides (TGs) play important roles in renewable energies, food production, medicine, and metabolism in organisms. Here, we developed a novel coarse-grained (CG) force field (FF) for triglycerides to reproduce both the structural and thermodynamic properties of bulk TGs, TG/air interfaces, and TG/water mixtures using molecular dynamics (MD) simulations. We rigorously optimized the bonded and nonbonded force parameters between the CG beads of TGs and nonbonded force parameters between TG beads and polarizable CG water beads by employing an efficient meta-multilinear interpolation parameterization algorithm recently developed by us. This CG FF performs very well in reproducing the percolating network of the TG bulk phase self-assembled in water and a variety of molecular conformations predicted by all-atom MD simulations. More importantly, it also correctly reproduces multiple experimentally measurable macroscopic thermodynamic properties, including the density and surface tensions of both the TG/air and TG/water interfaces. This paves the way for studying more complicated systems involving TGs on a large scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA