Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Avian Pathol ; : 1-10, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887084

RESUMO

Ascites syndrome (AS) in broiler chickens, also known as pulmonary arterial hypertension (PAH), is a significant disease in the poultry industry. It is a nutritional metabolic disease that is closely associated with hypoxia-inducible factors and rapid growth. The rise in pulmonary artery pressure is a crucial characteristic of AS and is instrumental in its development. Hypoxia-inducible factor 1α (HIF-1α) is an active subunit of a key transcription factor in the oxygen-sensing pathway. HIF-1α plays a vital role in oxygen homeostasis and the development of pulmonary hypertension. Studying the effects of HIF-1α on pulmonary hypertension in humans or mammals, as well as ascites in broilers, can help us understand the pathogenesis of AS. Therefore, this review aims to (1) summarize the mechanism of HIF-1α in the development of pulmonary hypertension, (2) provide theoretical significance in explaining the mechanism of HIF-1α in the development of pulmonary arterial hypertension (ascites syndrome) in broilers, and (3) establish the correlation between HIF-1α and pulmonary arterial hypertension (ascites syndrome) in broilers. HIGHLIGHTSExplains the hypoxic mechanism of HIF-1α.Linking HIF-1α to pulmonary hypertension in broilers.Explains the role of microRNAs in pulmonary arterial hypertension in broilers.

2.
BMC Microbiol ; 23(1): 180, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420170

RESUMO

This study aimed to understand the changes in the milk and gut microbiota of dairy cows with mastitis, and to further explore the relationship between mastitis and the microbiota. In this study, we extracted microbial DNA from healthy and mastitis cows and performed high-throughput sequencing using the Illumina NovaSeq sequencing platform. OTU clustering was performed to analyze complexity, multi-sample comparisons, differences in community structure between groups, and differential analysis of species composition and abundance. The results showed that there were differences in microbial diversity and community composition in the milk and feces of normal and mastitis cows, where the diversity of microbiota decreased and species abundance increased in the mastitis group. There was a significant difference in the flora composition of the two groups of samples (P < 0.05), especially at the genus level, the difference in the milk samples was Sphingomonas (P < 0.05) and Stenotrophomonas (P < 0.05), the differences in stool samples were Alistipes (P < 0.05), Flavonifractor (P < 0.05), Agathobacter (P < 0.05) and Pygmaiobacter (P < 0.05). In conclusion, the microbiota of the udder and intestinal tissues of dairy cows suffering from mastitis will change significantly. This suggests that the development of mastitis is related to the endogenous pathway of microbial intestinal mammary glands, but the mechanisms involved need further study.


Assuntos
Lactobacillales , Mastite , Microbiota , Feminino , Bovinos , Animais , Humanos , Leite , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala
3.
Poult Sci ; 103(7): 103814, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718538

RESUMO

Yolk Peritonitis can lead to a rapid decline in egg production, which seriously affects the health of laying hens and the profitability of chicken farms. Escherichia coli (E. coli) is the most common cause of yolk peritonitis in laying hens. In this study, bacterial samples were collected from the ovaries and fallopian tubes of laying hens with suspected yolk peritonitis from a laying farm in Jiangsu Province, and their pathogenicity and drug resistance were investigated. Initially, morphological and biochemical detection methods were employed to isolate and identify the pathogenic bacteria. The results showed that a total of 16 strains of E. coli were isolated from laying hens with yolk peritonitis. Subsequently, the drug resistance and pathogenicity of a randomly selected E. coli strain were analyzed and predicted by genome sequencing technology, and the drug resistance of E. coli was verified by drug sensitivity test and PCR. Finally, the virulence was verified by infection experiment in mice. The study revealed that the egg-yolk peritonitis in laying hens was caused by E. coli infection, and the genome sequencing analysis revealed that the bacteria had multidrug resistance and high virulence. The drug susceptibility testing indicates that E. coli exhibited resistance to aminoglycosides, ß-lactam, macrolides, fluoroquinolones, and sulfonamides. In this study, resistance genes including KdpE, aadA5, APH(3 ")-ID, APH(6)-ID, and TEM-1 were identified, and their expression levels varied across different stages of bacterial growth. The results of virulence analysis indicated a mortality rate of 50% in mice infected with E. coli at a concentration of 2.985 × 107 CFU/mL. E. coli infection resulted in damage to various tissues and organs in mice, with the intestinal tissue structure being the most severely affected. This study provides a reference for the study of drug resistance mechanisms in E. coli and provides valuable insights into the selection of drugs for the treatment of vitelline peritonitis.


Assuntos
Antibacterianos , Galinhas , Infecções por Escherichia coli , Escherichia coli , Peritonite , Doenças das Aves Domésticas , Animais , Peritonite/microbiologia , Peritonite/veterinária , Peritonite/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/fisiologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Doenças das Aves Domésticas/microbiologia , Feminino , Antibacterianos/farmacologia , Virulência , Camundongos , Farmacorresistência Bacteriana , Gema de Ovo
4.
Poult Sci ; 103(5): 103388, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428352

RESUMO

Pulmonary artery remodeling is a characteristic feature of broiler ascites syndrome (BAS). Pulmonary artery endothelial cells (PAECs) regulated by HIF-1α play a critical role in pulmonary artery remodeling, but the underlying mechanisms of HIF-1α in BAS remain unclear. In this experiment, primary PAECs were cultured in vitro and were identified by coagulation factor VIII. After hypoxia and RNA interference, the mRNA and protein expression levels of HIF-1α and VEGF were determined by qPCR and Western blotting. The transcriptome profiles of PAECs were obtained by RNA sequencing. Our results showed that the positive rate of PAECs was more than 90%, hypoxia-induced promoted the proliferation and apoptosis of PAECs, and RNA interference significantly downregulated the expression of HIF-1α, inhibited the proliferation of PAECs, and promoted the apoptosis of PAECs. In addition, transcriptome sequencing analysis indicated that HIF-1α may regulate broiler ascites syndrome by mediating COL4A, vitronectin, vWF, ITGα8, and MKP-5 in the ECM, CAMs and MAPK pathways in PAECs. These studies lay the foundation for further exploration of the mechanisms of pulmonary artery remodeling, and HIF-1α may be a potentially effective gene for the prevention and treatment of BAS.


Assuntos
Galinhas , Células Endoteliais , Subunidade alfa do Fator 1 Induzível por Hipóxia , Artéria Pulmonar , Interferência de RNA , Animais , Artéria Pulmonar/metabolismo , Artéria Pulmonar/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células Endoteliais/fisiologia , Células Endoteliais/metabolismo , Proliferação de Células , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Doenças das Aves Domésticas/genética , Ascite/veterinária , Ascite/genética , Apoptose , Células Cultivadas
5.
Int J Biol Macromol ; 213: 19-26, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35642850

RESUMO

Pulmonary hypertension syndrome (PHS) is a disease that is difficult to overcome for fast-growing broilers. It causes pulmonary vascular remodeling and ascites in broilers. As a classical inhibitor of cancer metastasis, phosphatidylethanolamine binding protein 1 (PEBP1) regulates angiogenesis in the process of tumor metastasis through multiple signal pathways. However, whether PEBP1 can regulate pulmonary artery remodeling in broilers with PHS has not been reported. This study constructed the prokaryotic expression vector of [PEBP1]-pET32a by genetic engineering technology, the recombinant PEBP1 protein was expressed in large quantities, and the PEBP1 polyclonal antibody was prepared by immunizing rabbits with the recombinant PEBP1 protein. Western blot and immunofluorescence results showed that PEBP1 was expressed in many kinds of animal tissues. However, due to the species specificity of polyclonal antibodies, the expression level of PEBP1 protein in broilers and ducks with high homology was significantly higher than that in other species of animals. More interestingly, we found that the expression of PEBP1 protein decreased significantly in broilers with PHS. These studies laid a foundation for further exploration of the mechanism of pulmonary artery remodeling. In addition, the PEBP1 polyclonal antibody provided convenience for further study of the role of PEBP1 in PHS.


Assuntos
Hipertensão Pulmonar , Animais , Anticorpos/metabolismo , Galinhas/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/veterinária , Proteína de Ligação a Fosfatidiletanolamina/genética , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA