Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Hepatology ; 79(5): 1005-1018, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820064

RESUMO

BACKGROUND AND AIMS: Although the benefits of vertical sleeve gastrectomy (VSG) surgery are well known, the molecular mechanisms by which VSG alleviates obesity and its complications remain unclear. We aim to determine the role of CYP8B1 (cytochrome P450, family 8, subfamily B, polypeptide 1) in mediating the metabolic benefits of VSG. APPROACH AND RESULTS: We found that expression of CYP8B1, a key enzyme in controlling the 12α-hydroxylated (12α-OH) bile acid (BA) to non-12α-OH BA ratio, was strongly downregulated after VSG. Using genetic mouse models of CYP8B1 overexpression, knockdown, and knockout, we demonstrated that overexpression of CYP8B1 dampened the metabolic improvements associated with VSG. In contrast, short hairpin RNA-mediated CYP8B1 knockdown improved metabolism similar to those observed after VSG. Cyp8b1 deficiency diminished the metabolic effects of VSG. Further, VSG-induced alterations to the 12α-OH/non-12α-OH BA ratio in the BA pool depended on CYP8B1 expression level. Consequently, intestinal lipid absorption was restricted, and the gut microbiota (GM) profile was altered. Fecal microbiota transplantation from wild type-VSG mice (vs. fecal microbiota transplantation from wild-type-sham mice) improved metabolism in recipient mice, while there were no differences between mice that received fecal microbiota transplantation from knockout-sham and knockout-VSG mice. CONCLUSIONS: CYP8B1 is a critical downstream target of VSG. Modulation of BA composition and gut microbiota profile by targeting CYP8B1 may provide novel insight into the development of therapies that noninvasively mimic bariatric surgery to treat obesity and its complications.


Assuntos
Cirurgia Bariátrica , Esteroide 12-alfa-Hidroxilase , Camundongos , Animais , Esteroide 12-alfa-Hidroxilase/metabolismo , Regulação para Baixo , Obesidade/metabolismo , Gastrectomia , Camundongos Endogâmicos C57BL
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526687

RESUMO

Vertical sleeve gastrectomy (VSG) is one of the most effective and durable therapies for morbid obesity and its related complications. Although bile acids (BAs) have been implicated as downstream mediators of VSG, the specific mechanisms through which BA changes contribute to the metabolic effects of VSG remain poorly understood. Here, we confirm that high fat diet-fed global farnesoid X receptor (Fxr) knockout mice are resistant to the beneficial metabolic effects of VSG. However, the beneficial effects of VSG were retained in high fat diet-fed intestine- or liver-specific Fxr knockouts, and VSG did not result in Fxr activation in the liver or intestine of control mice. Instead, VSG decreased expression of positive hepatic Fxr target genes, including the bile salt export pump (Bsep) that delivers BAs to the biliary pathway. This reduced small intestine BA levels in mice, leading to lower intestinal fat absorption. These findings were verified in sterol 27-hydroxylase (Cyp27a1) knockout mice, which exhibited low intestinal BAs and fat absorption and did not show metabolic improvements following VSG. In addition, restoring small intestinal BA levels by dietary supplementation with taurocholic acid (TCA) partially blocked the beneficial effects of VSG. Altogether, these findings suggest that reductions in intestinal BAs and lipid absorption contribute to the metabolic benefits of VSG.


Assuntos
Colestanotriol 26-Mono-Oxigenase/genética , Gastrectomia/métodos , Obesidade Mórbida/cirurgia , Receptores Citoplasmáticos e Nucleares/genética , Animais , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Redução de Peso/genética
3.
Handb Exp Pharmacol ; 256: 359-378, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31144046

RESUMO

Bariatric surgical procedures, including Roux-en-Y gastric bypass and vertical sleeve gastrectomy, are currently the most effective clinical approaches to achieve a significant and sustainable weight loss. Bariatric surgery also concomitantly improves type 2 diabetes and other metabolic diseases such as nonalcoholic steatohepatitis, cardiovascular diseases, and hyperlipidemia. However, despite the recent exciting progress in the understanding how bariatric surgery works, the underlying molecular mechanisms of bariatric surgery remain largely unknown. Interestingly, bile acids are emerging as potential signaling molecules to mediate the beneficial effects of bariatric surgery. In this review, we summarize the recent findings on bile acids and their activated receptors in mediating the beneficial metabolic effects of bariatric surgery. We also discuss the potential to target bile acid-activated receptors in order to treat obesity and other metabolic diseases.


Assuntos
Cirurgia Bariátrica , Ácidos e Sais Biliares , Derivação Gástrica , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Diabetes Mellitus Tipo 2 , Humanos , Redução de Peso
4.
Nucleic Acids Res ; 45(12): 7367-7381, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28575390

RESUMO

The editing function of aminoacyl-tRNA synthetases (aaRSs) is indispensible for formation of the correct aminoacyl-tRNAs. Editing deficiency may lead to growth inhibition and the pathogenesis of various diseases. Herein, we confirmed that norvaline (Nva) but not isoleucine or valine is the major threat to the editing function of Saccharomyces cerevisiae leucyl-tRNA synthetase (ScLeuRS), both in vitro and in vivo. Nva could be misincorporated into the proteome of the LeuRS editing-deficient yeast strain (D419A/ScΔleuS), potentially resulting in dysfunctional protein folding and growth delay. Furthermore, the exploration of the Nva-induced intracellular stress response mechanism in D419A/ScΔleuS revealed that Hsp70 chaperones were markedly upregulated in response to the potential protein misfolding. Additionally, proline (Pro), glutamate (Glu) and glutamine (Gln), which may accumulate due to the conversion of Nva, collectively contributed to the reduction of reactive oxygen species (ROS) levels in Nva-treated D419A/ScΔleuS cells. In conclusion, our study highlights the significance of the editing function of LeuRS and provides clues for understanding the intracellular stress protective mechanisms that are triggered in aaRS editing-deficient organisms.


Assuntos
Regulação Fúngica da Expressão Gênica , Leucina-tRNA Ligase/genética , Edição de RNA , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Valina/análogos & derivados , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Glutamina/metabolismo , Glutamina/farmacologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Isoleucina/metabolismo , Isoleucina/farmacologia , Cinética , Leucina-tRNA Ligase/metabolismo , Prolina/metabolismo , Prolina/farmacologia , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Valina/metabolismo , Valina/farmacologia
5.
J Biol Chem ; 291(7): 3613-25, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26677220

RESUMO

Leucyl-tRNA synthetase (LeuRS) is a multidomain enzyme that catalyzes Leu-tRNA(Leu) formation and is classified into bacterial and archaeal/eukaryotic types with significant diversity in the C-terminal domain (CTD). CTDs of both bacterial and archaeal LeuRSs have been reported to recognize tRNA(Leu) through different modes of interaction. In the human pathogen Candida albicans, the cytoplasmic LeuRS (CaLeuRS) is distinguished by its capacity to recognize a uniquely evolved chimeric tRNA(Ser) (CatRNA(Ser)(CAG)) in addition to its cognate CatRNA(Leu), leading to CUG codon reassignment. Our previous study showed that eukaryotic but not archaeal LeuRSs recognize this peculiar tRNA(Ser), suggesting the significance of their highly divergent CTDs in tRNA(Ser) recognition. The results of this study provided the first evidence of the indispensable function of the CTD of eukaryotic LeuRS in recognizing non-cognate CatRNA(Ser) and cognate CatRNA(Leu). Three lysine residues were identified as involved in mediating enzyme-tRNA interaction in the leucylation process: mutation of all three sites totally ablated the leucylation activity. The importance of the three lysine residues was further verified by gel mobility shift assays and complementation of a yeast leuS gene knock-out strain.


Assuntos
Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , Leucina-tRNA Ligase/metabolismo , Modelos Moleculares , RNA Fúngico/metabolismo , RNA de Transferência de Leucina/metabolismo , RNA de Transferência de Serina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Candida albicans/metabolismo , Sequência Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Técnicas de Inativação de Genes , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética , Lisina/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação de Ácido Nucleico , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Fúngico/química , RNA de Transferência de Leucina/química , RNA de Transferência de Serina/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
6.
J Biol Chem ; 291(40): 21208-21221, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27542414

RESUMO

Translational fidelity mediated by aminoacyl-tRNA synthetases ensures the generation of the correct aminoacyl-tRNAs, which is critical for most species. Threonyl-tRNA synthetase (ThrRS) contains multiple domains, including an N2 editing domain. Of the ThrRS domains, N1 is the last to be assigned a function. Here, we found that ThrRSs from Mycoplasma species exhibit differences in their domain composition and editing active sites compared with the canonical ThrRSs. The Mycoplasma mobile ThrRS, the first example of a ThrRS naturally lacking the N1 domain, displays efficient post-transfer editing activity. In contrast, the Mycoplasma capricolum ThrRS, which harbors an N1 domain and a degenerate N2 domain, is editing-defective. Only editing-capable ThrRSs were able to support the growth of a yeast thrS deletion strain (ScΔthrS), thus suggesting that ScΔthrS is an excellent tool for studying the in vivo editing of introduced bacterial ThrRSs. On the basis of the presence or absence of an N1 domain, we further revealed the crucial importance of the only absolutely conserved residue within the N1 domain in regulating editing by mediating an N1-N2 domain interaction in Escherichia coli ThrRS. Our results reveal the translational quality control of various ThrRSs and the role of the N1 domain in translational fidelity.


Assuntos
Proteínas de Bactérias , Mycoplasma capricolum , Biossíntese de Proteínas/fisiologia , Treonina-tRNA Ligase , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Teste de Complementação Genética , Mycoplasma capricolum/enzimologia , Mycoplasma capricolum/genética , Domínios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo
7.
Hum Mutat ; 37(2): 165-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26553276

RESUMO

Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by spasticity of the lower limbs due to pyramidal tract dysfunction. Here, we report that a missense homozygous mutation c.424G>T (p.D142Y) in the FARS2 gene, which encodes a mitochondrial phenylalanyl tRNA synthetase (mtPheRS), causes HSP in a Chinese consanguineous family by using combination of homozygous mapping and whole-exome sequencing. Immunohistochemical experiments were performed showing that the FARS2 protein was highly expressed in the Purkinje cells of rat cerebellum. The aminoacylation activity of mtPheRS was severely disrupted by the p.D142Y substitution in vitro not only in the first aminoacylation step but also in the last transfer step. Taken together, our results indicate that a missense mutation in FARS2 contributes to HSP, which has the clinical significance of the regulation of tRNA synthetases in human neurodegenerative diseases.


Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Fenilalanina-tRNA Ligase/genética , Paraplegia Espástica Hereditária/genética , Animais , Sequência de Bases , Consanguinidade , Análise Mutacional de DNA , Exoma , Feminino , Expressão Gênica , Homozigoto , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Dados de Sequência Molecular , Linhagem , Fenilalanina-tRNA Ligase/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Ratos , Alinhamento de Sequência , Paraplegia Espástica Hereditária/enzimologia , Paraplegia Espástica Hereditária/patologia
8.
J Biol Chem ; 290(40): 24391-402, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26272616

RESUMO

The connective polypeptide 1 (CP1) editing domain of leucyl-tRNA synthetase (LeuRS) from various species either harbors a conserved active site to exclude tRNA mis-charging with noncognate amino acids or is evolutionarily truncated or lost because there is no requirement for high translational fidelity. However, human mitochondrial LeuRS (hmtLeuRS) contains a full-length but degenerate CP1 domain that has mutations in some residues important for post-transfer editing. The significance of such an inactive CP1 domain and a translational accuracy mechanism with different noncognate amino acids are not completely understood. Here, we identified the essential role of the evolutionarily divergent CP1 domain in facilitating hmtLeuRS's catalytic efficiency and endowing enzyme with resistance to AN2690, a broad-spectrum drug acting on LeuRSs. In addition, the canonical core of hmtLeuRS is not stringent for noncognate norvaline (Nva) and valine (Val). hmtLeuRS has a very weak tRNA-independent pre-transfer editing activity for Nva, which is insufficient to remove mis-activated Nva. Moreover, hmtLeuRS chimeras fused with a functional CP1 domain from LeuRSs of other species, regardless of origin, showed restored post-transfer editing activity and acquired fidelity during aminoacylation. This work offers a novel perspective on the role of the CP1 domain in optimizing aminoacylation efficiency.


Assuntos
Aminoacil-tRNA Sintetases/química , Leucina-tRNA Ligase/química , Sequência de Aminoácidos , Aminoácidos/química , Aminoacil-tRNA Sintetases/fisiologia , Aminoacilação , Domínio Catalítico , Dicroísmo Circular , Humanos , Hidrólise , Leucina-tRNA Ligase/fisiologia , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Edição de RNA , Homologia de Sequência de Aminoácidos , Valina/análogos & derivados , Valina/química
9.
J Biol Chem ; 290(3): 1664-78, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25416776

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs.


Assuntos
Mutação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Treonina-tRNA Ligase/genética , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/metabolismo , Catálise , Clonagem Molecular , Biblioteca Gênica , Teste de Complementação Genética , Humanos , Dados de Sequência Molecular , Mutagênese , Fenótipo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
10.
RNA ; 20(9): 1440-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25051973

RESUMO

Leucyl-tRNA synthetases (LeuRSs) catalyze the linkage of leucine with tRNA(Leu). LeuRS contains a catalysis domain (aminoacylation) and a CP1 domain (editing). CP1 is inserted 35 Å from the aminoacylation domain. Aminoacylation and editing require CP1 to swing to the coordinated conformation. The neck between the CP1 domain and the aminoacylation domain is defined as the CP1 hairpin. The location of the CP1 hairpin suggests a crucial role in the CP1 swing and domain-domain interaction. Here, the CP1 hairpin of Homo sapiens cytoplasmic LeuRS (hcLeuRS) was deleted or substituted by those from other representative species. Lack of a CP1 hairpin led to complete loss of aminoacylation, amino acid activation, and tRNA binding; however, the mutants retained post-transfer editing. Only the CP1 hairpin from Saccharomyces cerevisiae LeuRS (ScLeuRS) could partly rescue the hcLeuRS functions. Further site-directed mutagenesis indicated that the flexibility of small residues and the charge of polar residues in the CP1 hairpin are crucial for the function of LeuRS.


Assuntos
Aminoacilação/genética , Domínio Catalítico/genética , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética , Edição de RNA/genética , Sequência de Aminoácidos , Catálise , Escherichia coli/genética , Humanos , Leucina-tRNA Ligase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Organismos Geneticamente Modificados , Domínios e Motivos de Interação entre Proteínas/genética , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
11.
Nucleic Acids Res ; 42(22): 13873-86, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25414329

RESUMO

Yeast mitochondria contain a minimalist threonyl-tRNA synthetase (ThrRS) composed only of the catalytic core and tRNA binding domain but lacking the entire editing domain. Besides the usual tRNA(Thr)2, some budding yeasts, such as Saccharomyces cerevisiae, also contain a non-canonical tRNA(Thr)1 with an enlarged 8-nucleotide anticodon loop, reprograming the usual leucine CUN codons to threonine. This raises interesting questions about the aminoacylation fidelity of such ThrRSs and the possible contribution of the two tRNA(Thr)s during editing. Here, we found that, despite the absence of the editing domain, S. cerevisiae mitochondrial ThrRS (ScmtThrRS) harbors a tRNA-dependent pre-transfer editing activity. Remarkably, only the usual tRNA(Thr)2 stimulated pre-transfer editing, thus, establishing the first example of a synthetase exhibiting tRNA-isoacceptor specificity during pre-transfer editing. We also showed that the failure of tRNA(Thr)1 to stimulate tRNA-dependent pre-transfer editing was due to the lack of an editing domain. Using assays of the complementation of a ScmtThrRS gene knockout strain, we showed that the catalytic core and tRNA binding domain of ScmtThrRS co-evolved to recognize the unusual tRNA(Thr)1. In combination, the results provide insights into the tRNA-dependent editing process and suggest that tRNA-dependent pre-transfer editing takes place in the aminoacylation catalytic core.


Assuntos
Mitocôndrias/enzimologia , RNA de Transferência de Treonina/metabolismo , Treonina-tRNA Ligase/metabolismo , Aminoacilação de RNA de Transferência , Anticódon , Evolução Molecular , Deleção de Genes , Estrutura Terciária de Proteína , RNA de Transferência de Treonina/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Treonina-tRNA Ligase/química , Treonina-tRNA Ligase/genética
12.
Nucleic Acids Res ; 42(8): 5109-24, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500203

RESUMO

Leucyl-tRNA (transfer RNA) synthetase (LeuRS) is a multi-domain enzyme, which is divided into bacterial and archaeal/eukaryotic types. In general, one specific LeuRS, the domains of which are of the same type, exists in a single cell compartment. However, some species, such as the haloalkaliphile Natrialba magadii, encode two cytoplasmic LeuRSs, NmLeuRS1 and NmLeuRS2, which are the first examples of naturally occurring chimeric enzymes with different domains of bacterial and archaeal types. Furthermore, N. magadii encodes typical archaeal tRNA(Leu)s. The tRNA recognition mode, aminoacylation and translational quality control activities of these two LeuRSs are interesting questions to be addressed. Herein, active NmLeuRS1 and NmLeuRS2 were successfully purified after gene expression in Escherichia coli. Under the optimized aminoacylation conditions, we discovered that they distinguished cognate NmtRNA(Leu) in the archaeal mode, whereas the N-terminal region was of the bacterial type. However, NmLeuRS1 exhibited much higher aminoacylation and editing activity than NmLeuRS2, suggesting that NmLeuRS1 is more likely to generate Leu-tRNA(Leu) for protein biosynthesis. Moreover, using NmLeuRS1 as a model, we demonstrated misactivation of several non-cognate amino acids, and accuracy of protein synthesis was maintained mainly via post-transfer editing. This comprehensive study of the NmLeuRS/tRNA(Leu) system provides a detailed understanding of the coevolution of aminoacyl-tRNA synthetases and tRNA.


Assuntos
Halobacteriaceae/enzimologia , Leucina-tRNA Ligase/metabolismo , RNA de Transferência de Leucina/metabolismo , Aminoacilação de RNA de Transferência , Aminoácidos/metabolismo , Bactérias/enzimologia , Halobacteriaceae/genética , Concentração de Íons de Hidrogênio , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/classificação , Cloreto de Potássio , Estrutura Terciária de Proteína
13.
RNA Biol ; 12(8): 900-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106808

RESUMO

Post-transcriptional modifications bring chemical diversity to tRNAs, especially at positions 34 and 37 of the anticodon stem-loop (ASL). TrmL is the prokaryotic methyltransferase that catalyzes the transfer of the methyl group from S-adenosyl-L-methionine to the wobble base of tRNA(Leu)CAA and tRNA(Leu)UAA isoacceptors. This Cm34/Um34 modification affects codon-anticodon interactions and is essential for translational fidelity. TrmL-catalyzed 2'-O-methylation requires its homodimerization; however, understanding of the tRNA recognition mechanism by TrmL remains elusive. In the current study, by measuring tRNA methylation by TrmL and performing kinetic analysis of tRNA mutants, we found that TrmL exhibits a fine-tuned tRNA substrate recognition mechanism. Anticodon stem-loop minihelices with an extension of 2 base pairs are the minimal substrate for EcTrmL methylation. A35 is a key residue for TrmL recognition, while A36-A37-A38 are important either via direct interaction with TrmL or due to the necessity for prior isopentenylation (i(6)) at A37. In addition, TrmL only methylates pyrimidines but not purine residues at the wobble position, and the 2'-O-methylation relies on prior N(6)-isopentenyladenosine modification at position 37.


Assuntos
Anticódon/genética , Códon/genética , Proteínas de Escherichia coli/genética , Metiltransferases/genética , RNA de Transferência de Leucina/genética , Alcenos/metabolismo , Anticódon/química , Anticódon/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Biocatálise , Códon/química , Códon/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Metilação , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Multimerização Proteica , Pirimidinas/metabolismo , RNA de Transferência de Leucina/química , RNA de Transferência de Leucina/metabolismo , S-Adenosilmetionina/metabolismo , Especificidade por Substrato
14.
Nucleic Acids Res ; 41(16): 7828-42, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804755

RESUMO

Unlike other transfer RNAs (tRNA)-modifying enzymes from the SPOUT methyltransferase superfamily, the tRNA (Um34/Cm34) methyltransferase TrmL lacks the usual extension domain for tRNA binding and consists only of a SPOUT domain. Both the catalytic and tRNA recognition mechanisms of this enzyme remain elusive. By using tRNAs purified from an Escherichia coli strain with the TrmL gene deleted, we found that TrmL can independently catalyze the methyl transfer from S-adenosyl-L-methionine to and isoacceptors without the involvement of other tRNA-binding proteins. We have solved the crystal structures of TrmL in apo form and in complex with S-adenosyl-homocysteine and identified the cofactor binding site and a possible active site. Methyltransferase activity and tRNA-binding affinity of TrmL mutants were measured to identify residues important for tRNA binding of TrmL. Our results suggest that TrmL functions as a homodimer by using the conserved C-terminal half of the SPOUT domain for catalysis, whereas residues from the less-conserved N-terminal half of the other subunit participate in tRNA recognition.


Assuntos
Proteínas de Escherichia coli/química , Metiltransferases/química , RNA de Transferência de Leucina/metabolismo , Sequência de Aminoácidos , Aminoácidos Básicos/química , Domínio Catalítico , Coenzimas/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Multimerização Proteica , RNA de Transferência de Leucina/química , S-Adenosil-Homocisteína/química , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência
15.
Nucleic Acids Res ; 41(21): 9825-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23969415

RESUMO

Aminoacyl-tRNA synthetases should ensure high accuracy in tRNA aminoacylation. However, the absence of significant structural differences between amino acids always poses a direct challenge for some aminoacyl-tRNA synthetases, such as leucyl-tRNA synthetase (LeuRS), which require editing function to remove mis-activated amino acids. In the cytoplasm of the human pathogen Candida albicans, the CUG codon is translated as both Ser and Leu by a uniquely evolved CatRNA(Ser)(CAG). Its cytoplasmic LeuRS (CaLeuRS) is a crucial component for CUG codon ambiguity and harbors only one CUG codon at position 919. Comparison of the activity of CaLeuRS-Ser(919) and CaLeuRS-Leu(919) revealed yeast LeuRSs have a relaxed tRNA recognition capacity. We also studied the mis-activation and editing of non-cognate amino acids by CaLeuRS. Interestingly, we found that CaLeuRS is naturally deficient in tRNA-dependent pre-transfer editing for non-cognate norvaline while displaying a weak tRNA-dependent pre-transfer editing capacity for non-cognate α-amino butyric acid. We also demonstrated that post-transfer editing of CaLeuRS is not tRNA(Leu) species-specific. In addition, other eukaryotic but not archaeal or bacterial LeuRSs were found to recognize CatRNA(Ser)(CAG). Overall, we systematically studied the aminoacylation and editing properties of CaLeuRS and established a characteristic LeuRS model with naturally deficient tRNA-dependent pre-transfer editing, which increases LeuRS types with unique editing patterns.


Assuntos
Leucina-tRNA Ligase/metabolismo , Aminoacilação de RNA de Transferência , Sequência de Aminoácidos , Aminobutiratos/metabolismo , Archaea/enzimologia , Bactérias/enzimologia , Candida albicans/enzimologia , Código Genético , Humanos , Leucina-tRNA Ligase/química , Dados de Sequência Molecular , RNA de Transferência de Leucina/metabolismo , RNA de Transferência de Serina/metabolismo , Alinhamento de Sequência , Especificidade da Espécie , Valina/análogos & derivados , Valina/metabolismo
16.
Biochem J ; 453(3): 455-65, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23631826

RESUMO

Point mutations in hmtRNAs (human mitochondrial tRNAs) can cause various disorders, such as CPEO (chronic progressive external ophthalmoplegia) and MM (mitochondrial myopathy). Mitochondrial tRNALeu, especially the UUR codon isoacceptor, is recognized as a hot spot for pathogenic mtDNA point mutations. Thus far, 40 mutations have been reported in hmtRNAsLeu. In the present paper, we describe the wide range of effects of two substitutions found in the TΨC arms of two hmtRNAsLeu isoacceptors. The G52A substitution, corresponding to the pathogenic G12315A mutation in tRNALeu(CUN), and G3283A in tRNALeu(UUR) exhibited structural changes in the outer corner of the tRNA shape as shown by RNase probing. These mutations also induced reductions in aminoacylation, 3'-end processing and base modification processes. The main effects of the A57G substitution, corresponding to mutations A12320G in tRNALeu(CUN) and A3288G in tRNALeu(UUR), were observed on the aminoacylation activity and binding to hmEF-Tu (human mitochondrial elongation factor Tu). These observations suggest that the wide range of effects may amplify the deleterious impact on mitochondrial protein synthesis in vivo. The findings also emphasize that an exact understanding of tRNA dysfunction is critical for the future development of therapies for mitochondrial diseases.


Assuntos
DNA Mitocondrial/genética , RNA de Transferência/genética , Humanos , Síndrome de Kearns-Sayre/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Miopatias Mitocondriais/genética , Mutação/genética , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Mutação Puntual/genética , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo
17.
Blood Adv ; 8(2): 309-323, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-37967356

RESUMO

ABSTRACT: Ca2+/calmodulin-dependent protein kinase II γ (CAMKIIγ) has been identified as a potential target for treating cancer. Based on our previous study of berbamine (BBM) as a CAMKIIγ inhibitor, we have synthesized a new BBM derivative termed PA4. Compared with BBM, PA4 showed improved potency and specificity and was more cytotoxic against lymphoma and leukemia than against other types of cancer. In addition to indirectly targeting c-Myc protein stability, we demonstrated that its cytotoxic effects were also mediated via increased reactive oxygen species production in lymphoma cells. PA4 significantly impeded tumor growth in vivo in a xenograft T-cell lymphoma mouse model. Pharmacokinetics studies demonstrated quick absorption into plasma after oral administration, with a maximum concentration of 1680 ± 479 ng/mL at 5.33 ± 2.31 hours. The calculated oral absolute bioavailability was 34.1%. Toxicity assessment of PA4 showed that the therapeutic window used in our experiments was safe for future development. Given its efficacy, safety, and favorable pharmacokinetic profile, PA4 is a potential lead candidate for treating lymphoma.


Assuntos
Antineoplásicos , Benzilisoquinolinas , Leucemia , Linfoma de Células T , Humanos , Camundongos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Benzilisoquinolinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
18.
J Chromatogr Sci ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36752419

RESUMO

Four monodisperse porous polymer microspheres were successfully prepared by seed emulsion polymerization and used as stationary phases for HPLC and preparative high-performance liquid chromatography (Prep-HPLC). All four polymer microspheres(polystyrene-polystyrene (PS-PS), polystyrene-poly(glycidyl methylate) (PS-PGMA), polystyrene-poly(methyl methylate) and poly(glycidyl methylate)-poly(glycidyl methylate) were used for filling HPLC empty columns. According to the analysis results of the HPLC column, PS-PS and PS-PGMA microspheres were screened out as the stationary phase of Prep-HPLC. The industrial-grade phytol was successfully separated and purified, and the purity of the final phytol was as high as 99%. The two types of polymer microspheres have been applied to industrial-grade phytol purification and have been used in factories.

19.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873324

RESUMO

Background: The circadian clock exerts temporal control of metabolic pathways to maintain homeostasis, and its disruption leads to the development of obesity and insulin resistance. In adipose tissue, key regulators of clock machinery orchestrate adipogenic processes via the Wnt signaling pathway to impact mature adipocyte development. Methods: Based on the recent finding of chlorhexidine as a new clock activator, we determined its potential anti-adipogenic activities in distinct adipogenic progenitor models. Furthermore, we report the structural optimization of chlorhexidine leading to the discovery of analogs with improved efficacy in inhibiting adipogenesis. Results: In adipogenic progenitors with Per2::dLuc luciferase reporter, Chlorhexidine shortened clock period length with induction of core clock components. Consistent with its clock-activating function, Chlorhexidine robustly suppressed the lineage commitment and maturation of adipogenic mesenchymal precursors, with comparable effect on inhibiting preadipocyte terminal differentiation. Mechanistically, we show that Chlorhexidine induces signaling components of the Wnt pathway resulting in activation of Wnt activity. Via modification of its chemical scaffold, we generated analogs of chlorhexidine that led to the identification of CM002 as a new clock- activating molecule with improved anti-adipogenic activity. Conclusions: Collectively, our findings uncovered the anti-adipogenic functions of a new class of small molecule clock activators. These compounds provide novel chemical probes to dissect clock function in maintaining metabolic homeostasis and may have therapeutic implications in obesity and associated metabolic disorders.

20.
Commun Biol ; 6(1): 105, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707678

RESUMO

Long non-coding RNAs (lncRNAs) are emerging important epigenetic regulators in metabolic processes. Whether they contribute to the metabolic effects of vertical sleeve gastrectomy (VSG), one of the most effective treatments for sustainable weight loss and metabolic improvement, is unknown. Herein, we identify a hepatic lncRNA Gm19619, which is strongly repressed by VSG but highly up-regulated by diet-induced obesity and overnight-fasting in mice. Forced transcription of Gm19619 in the mouse liver significantly promotes hepatic gluconeogenesis with the elevated expression of G6pc and Pck1. In contrast, AAV-CasRx mediated knockdown of Gm19619 in high-fat diet-fed mice significantly improves hepatic glucose and lipid metabolism. Mechanistically, Gm19619 is enriched along genomic regions encoding leptin receptor (Lepr) and transcription factor Foxo1, as revealed in chromatin isolation by RNA purification (ChIRP) assay and is confirmed to modulate their transcription in the mouse liver. In conclusion, Gm19619 may enhance gluconeogenesis and lipid accumulation in the liver.


Assuntos
Lipogênese , RNA Longo não Codificante , Animais , Camundongos , Dieta Hiperlipídica , Regulação para Baixo , Gastrectomia , Gluconeogênese/genética , Lipogênese/genética , Fígado/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA