Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Drug Metab Dispos ; 52(7): 582-596, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38697852

RESUMO

The International Consortium for Innovation and Quality in Pharmaceutical Development Transporter Working Group had a rare opportunity to analyze a crosspharma collation of in vitro data and assay methods for the evaluation of drug transporter substrate and inhibitor potential. Experiments were generally performed in accordance with regulatory guidelines. Discrepancies, such as not considering the impact of preincubation for inhibition and free or measured in vitro drug concentrations, may be due to the retrospective nature of the dataset and analysis. Lipophilicity was a frequent indicator of crosstransport inhibition (P-gp, BCRP, OATP1B, and OCT1), with high molecular weight (MW ≥500 Da) also common for OATP1B and BCRP inhibitors. A high level of overlap in in vitro inhibition across transporters was identified for BCRP, OATP1B1, and MATE1, suggesting that prediction of DDIs for these transporters will be common. In contrast, inhibition of OAT1 did not coincide with inhibition of any other transporter. Neutrals, bases, and compounds with intermediate-high lipophilicity tended to be P-gp and/or BCRP substrates, whereas compounds with MW <500 Da tended to be OAT3 substrates. Interestingly, the majority of in vitro inhibitors were not reported to be followed up with a clinical study by the submitting company, whereas those compounds identified as substrates generally were. Approaches to metabolite testing were generally found to be similar to parent testing, with metabolites generally being equally or less potent than parent compounds. However, examples where metabolites inhibited transporters in vitro were identified, supporting the regulatory requirement for in vitro testing of metabolites to enable integrated clinical DDI risk assessment. SIGNIFICANCE STATEMENT: A diverse dataset showed that transporter inhibition often correlated with lipophilicity and molecular weight (>500 Da). Overlapping transporter inhibition was identified, particularly that inhibition of BCRP, OATP1B1, and MATE1 was frequent if the compound inhibited other transporters. In contrast, inhibition of OAT1 did not correlate with the other drug transporters tested.


Assuntos
Indústria Farmacêutica , Proteínas de Membrana Transportadoras , Humanos , Indústria Farmacêutica/métodos , Proteínas de Membrana Transportadoras/metabolismo , Desenvolvimento de Medicamentos/métodos , Interações Medicamentosas/fisiologia , Preparações Farmacêuticas/metabolismo , Transporte Biológico/fisiologia , Inquéritos e Questionários , Animais
2.
Bioorg Med Chem ; 92: 117423, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37531921

RESUMO

Hematopoietic progenitor kinase 1 (HPK1) is regarded as a highly validated target in pre-clinical immune oncology. HPK1 has been described as regulating multiple critical signaling pathway in both adaptive and innate cells. In support of this role, HPK1 KO T cells show enhanced sensitivity to TCR activation and HPK1 KO mice display enhanced anti-tumor activity. Taken together, inhibition of HPK1 has the potential to induce enhanced anti-tumor immune response. Herein, we described the discovery of highly potent HPK1 inhibitors starting form a weak HTS hit. Using a structure-based drug design, HPK1 inhibitors exhibiting excellent cellular single-digit nanomolar potency in both proximal (pSLP76) and distal (IL-2) biomarkers along with sustained elevation of IL-2 cytokine secretion were discovered.


Assuntos
Interleucina-2 , Receptores de Antígenos de Linfócitos T , Camundongos , Animais , Chlorocebus aethiops , Proteínas Serina-Treonina Quinases , Células COS
3.
Bioorg Med Chem ; 40: 116163, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33932711

RESUMO

Bruton's tyrosine kinase (BTK) is a cytoplasmic, non-receptor tyrosine kinase member of the TEC family of tyrosine kinases. Pre-clinical and clinical data have shown that targeting BTK can be used for the treatment for B-cell disorders. Here we disclose the discovery of a novel imidazo[4,5-b]pyridine series of potent, selective reversible BTK inhibitors through a rational design approach. From a starting hit molecule 1, medicinal chemistry optimization led to the development of a lead compound 30, which exhibited 58 nM BTK inhibitory potency in human whole blood and high kinome selectivity. Additionally, the compound demonstrated favorable pharmacokinetics (PK), and showed potent dose-dependent efficacy in a rat CIA model.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Descoberta de Drogas , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
4.
Pharm Res ; 37(10): 194, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32918191

RESUMO

PURPOSE: We characterized three canine P-gp (cP-gp) deficient MDCKII cell lines. Their relevance for identifying efflux transporter substrates and predicting limitation of brain penetration were evaluated. In addition, we discuss how compound selection can be done in drug discovery by using these cell systems. METHOD: hMDR1, hBCRP-transfected, and non-transfected MDCKII ZFN cells (all with knock-down of endogenous cP-gp) were used for measuring permeability and efflux ratios for substrates. The compounds were also tested in MDR1_Caco-2 and BCRP_Caco-2, each with a double knock-out of BCRP/MRP2 or MDR1/MRP2 transporters respectively. Efflux results were compared between the MDCK and Caco-2 models. Furthermore, in vitro MDR1_ZFN efflux data were correlated with in vivo unbound drug brain-to-plasma partition coefficient (Kp,uu). RESULTS: MDR1 and BCRP substrates are correctly classified and robust transporter affinities with control substrates are shown. Cell passage mildly influenced mRNA levels of transfected transporters, but the transporter activity was proven stable for several years. The MDCK and Caco-2 models were in high consensus classifying same efflux substrates. Approx. 80% of enlisted substances were correctly predicted with the MDR1_ZFN model for brain penetration. CONCLUSION: cP-gp deficient MDCKII ZFN models are reliable tools to identify MDR1 and BCRP substrates and useful for predicting efflux liability for brain penetration.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Neoplasias/metabolismo , Farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células CACO-2 , Permeabilidade da Membrana Celular , Dibenzocicloeptenos/farmacologia , Dicetopiperazinas/farmacologia , Cães , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Células Madin Darby de Rim Canino , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Prazosina/farmacocinética , Quinidina/farmacocinética , Quinolinas/farmacologia , Especificidade por Substrato , Transfecção
5.
Angew Chem Int Ed Engl ; 54(35): 10313-6, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26110718

RESUMO

Targeting and stabilizing distinct kinase conformations is an instrumental strategy for dissecting conformation-dependent signaling of protein kinases. Herein the structure-based design, synthesis, and evaluation of pleckstrin homology (PH) domain-dependent covalent-allosteric inhibitors (CAIs) of the kinase Akt is reported. These inhibitors bind covalently to a distinct cysteine of the kinase and thereby stabilize the inactive kinase conformation. These modulators exhibit high potency and selectivity, and represent an innovative approach for chemical biology and medicinal chemistry research.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Ligação Competitiva , Humanos , Modelos Moleculares
6.
J Am Chem Soc ; 135(22): 8400-8, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23672540

RESUMO

In the attempt to discover novel chemical scaffolds that can modulate the activity of disease-associated enzymes, such as kinases, biochemical assays are usually deployed in high-throughput screenings. First-line assays, such as activity-based assays, often rely on fluorescent molecules by measuring a change in the total emission intensity, polarization state, or energy transfer to another fluorescent molecule. However, under certain conditions, intrinsic compound fluorescence can lead to difficult data analysis and to false-positive, as well as false-negative, hits. We have reported previously on a powerful direct binding assay called fluorescent labels in kinases ('FLiK'), which enables a sensitive measurement of conformational changes in kinases upon ligand binding. In this assay system, changes in the emission spectrum of the fluorophore acrylodan, induced by the binding of a ligand, are translated into a robust assay readout. However, under the excitation conditions of acrylodan, intrinsic compound fluorescence derived from highly conjugated compounds complicates data analysis. We therefore optimized this method by identifying novel fluorophores that excite in the far red, thereby avoiding compound fluorescence. With this advancement, even rigid compounds with multiple π-conjugated ring systems can now be measured reliably. This study was performed on three different kinase constructs with three different labeling sites, each undergoing distinct conformational changes upon ligand binding. It may therefore serve as a guideline for the establishment of novel fluorescence-based detection assays.


Assuntos
2-Naftilamina/análogos & derivados , Ensaios Enzimáticos , Fluorescência , Ensaios de Triagem em Larga Escala , Proteínas Quinases/química , 2-Naftilamina/química , 2-Naftilamina/metabolismo , Modelos Moleculares , Estrutura Molecular , Proteínas Quinases/metabolismo
7.
ChemMedChem ; 16(24): 3653-3662, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34582626

RESUMO

Bruton's tyrosine kinase (BTK) is a member of the Tec kinase family that is expressed in cells of hematopoietic lineage. Evidence has shown that inhibition of BTK has clinical benefit for the treatment of a wide array of autoimmune and inflammatory diseases. Previously we reported the discovery of a novel nicotinamide selectivity pocket (SP) series of potent and selective covalent irreversible BTK inhibitors. The top molecule 1 of that series strongly inhibited CYP2C8 (IC50 =100 nM), which was attributed to the bridged linker group. However, our effort on the linker replacement turned out to be fruitless. With the study of the X-ray crystal structure of compound 1, we envisioned the opportunity of removal of this liability via transposition of the linker moiety in 1 from C6 to C5 position of the pyridine core. With this strategy, our optimization led to the discovery of a novel series, in which the top molecule 18 A displayed reduced CYP inhibitory activity and good potency. To further explore this new series, different warheads besides acrylamide, for example cyanamide, were also tested. However, this effort didn't lead to the discovery of molecules with better potency than 18 A. The loss of potency in those molecules could be related to the reduced reactivity of the warhead or reversible binding mode. Further profiling of 18 A disclosed that it had a strong hERG (human Ether-a-go-go Related Gene) inhibition, which could be related to the phenoxyphenyl group.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Inibidores do Citocromo P-450 CYP2C8/farmacologia , Citocromo P-450 CYP2C8/metabolismo , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Inibidores do Citocromo P-450 CYP2C8/síntese química , Inibidores do Citocromo P-450 CYP2C8/química , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
8.
Cell Rep ; 20(12): 2833-2845, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930680

RESUMO

Kinase inhibitors represent the backbone of targeted cancer therapy, yet only a limited number of oncogenic drivers are directly druggable. By interrogating the activity of 1,505 kinase inhibitors, we found that BRD4-NUT-rearranged NUT midline carcinoma (NMC) cells are specifically killed by CDK9 inhibition (CDK9i) and depend on CDK9 and Cyclin-T1 expression. We show that CDK9i leads to robust induction of apoptosis and of markers of DNA damage response in NMC cells. While both CDK9i and bromodomain inhibition over time result in reduced Myc protein expression, only bromodomain inhibition induces cell differentiation and a p21-induced cell-cycle arrest in these cells. Finally, RNA-seq and ChIP-based analyses reveal a BRD4-NUT-specific CDK9i-induced perturbation of transcriptional elongation. Thus, our data provide a mechanistic basis for the genotype-dependent vulnerability of NMC cells to CDK9i that may be of relevance for the development of targeted therapies for NMC patients.


Assuntos
Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/química , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
9.
ACS Chem Biol ; 10(1): 279-88, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24959717

RESUMO

In addition to the catalytically active kinase domain, most kinases feature regulatory domains that govern their activity. Modulating and interfering with these interdomain interactions presents a major opportunity for understanding biological systems and developing novel therapeutics. Therefore, small molecule inhibitors that target these interactions through an allosteric mode of action have high intrinsic selectivity, as these interactions are often unique to a single kinase or kinase family. Here we report the development of iFLiK (interface-Fluorescent Labels in Kinases), a fluorescence-based assay that can monitor such interdomain interactions. Using iFLiK, we have demonstrated selective detection of allosteric Akt inhibitors that induce an inactive closed conformation unique to Akt. This methodology easily distinguished small molecule allosteric inhibitors from classic ATP-competitive inhibitors. Screening an in-house compound library with iFLiK, we were able to identify novel compounds with a scaffold that has not been previously described for allosteric Akt inhibitors.


Assuntos
Descoberta de Drogas/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/química , Bibliotecas de Moléculas Pequenas/farmacologia , Regulação Alostérica , Sítio Alostérico , Domínio Catalítico , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/química , Bibliotecas de Moléculas Pequenas/química
10.
ACS Chem Biol ; 8(1): 58-70, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23249378

RESUMO

The modulation of kinase function has become an important goal in modern drug discovery and chemical biology research. In cancer-targeted therapies, kinase inhibitors have been experiencing an upsurge, which can be measured by the increasing number of kinase inhibitors approved by the FDA in recent years. However, lack of efficacy, limited selectivity, and the emergence of acquired drug resistance still represent major bottlenecks in the clinic and challenge inhibitor development. Most known kinase inhibitors target the active kinase and are ATP competitive. A second class of small organic molecules, which address remote sites of the kinase and stabilize enzymatically inactive conformations, is rapidly moving to the forefront of kinase inhibitor research. Such allosteric modulators bind to sites that are less conserved across the kinome and only accessible upon conformational changes. These molecules are therefore thought to provide various advantages such as higher selectivity and extended drug target residence times. This review highlights various strategies that have been developed to utilizing exclusive structural features of kinases and thereby modulating their activity allosterically.


Assuntos
Sistemas de Liberação de Medicamentos , Inibidores de Proteínas Quinases , Proteínas Quinases/química , Regulação Alostérica , Ligação Competitiva , Humanos , Conformação Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA