Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Nutr ; 131(12): 1997-2004, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38600624

RESUMO

Soft drink consumption has become a highly controversial public health issue. Given the pattern of consumption in China, sugar-sweetened beverage is the main type of soft drink consumed. Due to containing high levels of fructose, a soft drink may have a deleterious effect on handgrip strength (HGS) due to oxidative stress, inflammation and insulin resistance. However, few studies show an association between soft drink consumption and HGS in adults. We aimed to investigate the association between soft drink consumption and longitudinal changes in HGS among a Chinese adult population. A longitudinal population-based cohort study (5-year follow-up, median: 3·66 years) was conducted in Tianjin, China. A total of 11 125 participants (56·7 % men) were enrolled. HGS was measured using a handheld digital dynamometer. Soft drink consumption (mainly sugar-containing carbonated beverages) was measured at baseline using a validated FFQ. ANCOVA was used to evaluate the association between soft drink consumption and annual change in HGS or weight-adjusted HGS. After adjusting for multiple confounding factors, the least square means (95 % CI) of annual change in HGS across soft drink consumption frequencies were -0·70 (-2·49, 1·09) for rarely drinks, -0·82 (-2·62, 0·97) for < 1 cup/week and -0·86 (-2·66, 0·93) for ≥ 1 cup/week (Pfor trend < 0·05). Likewise, a similar association was observed between soft drink consumption and annual change in weight-adjusted HGS. The results indicate that higher soft drink consumption was associated with faster HGS decline in Chinese adults.


Assuntos
Bebidas Gaseificadas , Força da Mão , Inflamação , Humanos , Masculino , Feminino , Bebidas Gaseificadas/efeitos adversos , China/epidemiologia , Pessoa de Meia-Idade , Estudos Longitudinais , Adulto , Estudos Prospectivos , Dieta , Estudos de Coortes
2.
Nutr Res Rev ; : 1-10, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38374605

RESUMO

Vegetables are known to be beneficial to human health, but the association between vegetable consumption and gastric cancer remains uncertain. To synthesise knowledge about the relationship between vegetable group consumption and gastric cancer risk, update present meta-analyses and estimate associations between vegetable consumption and gastric cancer risk based solely on prospective studies, we perform a PRISMA-compliant three-level meta-analysis. Systematic search identified thirteen prospective studies with fifty-two effect sizes that met all inclusion criteria and no exclusion criteria for our meta-analysis. Pooled risk ratios (RRs) showed a positive association between high vegetable consumption and low gastric cancer risk (pooled RR 0·93, 95% confidence interval 0·90-0·97, P = 0·06). In moderator analyses for indicators of gender, region and quantity of vegetable intake, there was no significant difference between subgroups. However, the effect became significant in populations with lower than the minimum risk exposure level (TMREL) of vegetable consumption (P < 0·05). Higher vegetable intake is associated with a decreased risk of gastric cancer. This effect may be limited to specific populations, such as ones with lower vegetable consumption. Evidence from our study has important public health implications for dietary recommendations.

3.
Exp Eye Res ; 227: 109366, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592680

RESUMO

World blindness is primarily caused by glaucoma. It has been predicted that by 2040, 118 million individuals will have glaucoma. Among Asians and Africans, primary angle-closure glaucoma (PACG) is the most prevalent type of glaucoma, for which treatment options are currently very limited. At present, lowering intraocular pressure (IOP) is the primary approach for PACG treatment. However, some PACG patients with decreased IOP measurements still advance. Additionally, because of the complicated pathophysiology, there are no biomarkers for diagnosis. Metabolomics is the study of the metabolites produced by all cellular processes in a biological sample, providing a method for identifying biomarkers and early diagnosis. Nevertheless, metabolomics has infrequently been applied to PACG. Previous research conducted by our lab on plasma metabolite fatty acids in PACG patients revealed reduced free fatty acid (FFA) levels, which may be connected to lipid peroxidation. To ascertain the relationship between other metabolites and PACG. We compared levels of amino acids and carnitine in patients with PACG (n = 147) and non-glaucoma (n = 340). Using metabolomics analysis, twenty-one amino acids and twenty-six carnitines (a total of ninety-six indicators) were examined. Odds ratios (OR) and 95% confidence intervals (CI) for these metabolites in relation to PACG were calculated. The relationship between ocular measures and metabolites was assessed by Spearman's rank correlation. Predictive performance was evaluated using the receiver operating characteristic (ROC). The C8/C2 level was comparable across patients with PACG and individuals without glaucoma based on the Wilcoxon rank-sum test. The PACG group had lower levels of Arginine (Arg), Ornithine (Orn), Arg/Orn, Orn/Cit, and C26/C20 than the nonglaucoma group, whereas Cit/Arg and C4/C2 ratios were greater. Both univariate and multivariate models showed a negative correlation between Orn and Orn/Cit and PACG. In the univariate model, palmitoylcarnitine (C16) had a negative correlation with PACG. According to our findings, metabolic profiles of plasma amino acids and carnitine between PACG patients and controls are different. The combination of amino acids and carnitine increased the predictive value of PACG. The Orn and Arg were negatively correlated with the local ocular neurodegenerative pathology. We speculate lipid peroxidation may explain the reduction in C16, and the decrease in Orn may be associated with hyperammonia neurotoxicity.


Assuntos
Glaucoma de Ângulo Fechado , Humanos , Glaucoma de Ângulo Fechado/diagnóstico , Carnitina , Tonometria Ocular , Pressão Intraocular , Espectrometria de Massas , Biomarcadores , Aminoácidos
4.
Nutr Metab Cardiovasc Dis ; 33(11): 2209-2219, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586920

RESUMO

BACKGROUND AND AIMS: Carotid atherosclerosis indicates an increased risk for cardiac-cerebral vascular disease. Given the pattern of consumption in China, sugar-sweetened beverage is the main type of soft drink consumed. As soft drinks contain a high amount of fructose, they may be a risk factor of carotid atherosclerosis. A prospective cohort study was conducted to investigate the association between soft drink consumption and the incidence of carotid atherosclerosis in a Chinese adult population. METHODS AND RESULTS: A total of 3828 participants (men: 2007 and women: 1821) were included. Carotid atherosclerosis was measured by using ultrasonography and was defined by increased carotid intima-media thickness and/or carotid plaques. Soft drink consumption was assessed using a validated food frequency questionnaire. Cox proportional hazards regression analysis was used to assess the association of soft drink consumption categories with the incidence of carotid atherosclerosis. During a mean follow-up of 3.20 years, 1009 individuals of the 3828 eligible participants developed carotid atherosclerosis. After adjusting for potential confounding factors, we compared the higher levels to the lowest level of soft drink consumption in women, and we estimated the multivariable hazard ratios and 95% confidence intervals of incident carotid atherosclerosis to be 1.09 (0.80, 1.50), and 1.56 (1.14, 2.13) (P for trend <0.05). However, there was no significant association between soft drink consumption and the incidence of carotid atherosclerosis in men or total population. CONCLUSION: The result indicated that soft drink consumption was associated with a higher incidence of carotid atherosclerosis in women. TRIAL REGISTERED: UMIN Clinical Trials Registry. TRIAL REGISTRATION NUMBER: UMIN000027174. TRIAL REGISTRATION WEBSITE: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000031137.

5.
Ann Nutr Metab ; 79(3): 291-300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37339616

RESUMO

INTRODUCTION: The aim of this study was to explore associations of aromatic amino acids (AAA) in early pregnancy with gestational diabetes mellitus (GDM), and whether high AAA and gut microbiota-related metabolites had interactive effects on GDM risk. METHODS: We conducted a 1:1 case-control study (n = 486) nested in a prospective cohort of pregnant women from 2010 to 2012. According to the International Association of Diabetes and Pregnancy Study Group's criteria, 243 women were diagnosed with GDM. Binary conditional logistic regression was performed to examine associations of AAA with GDM risk. Interactions between AAA and gut microbiota-related metabolites for GDM were examined using additive interaction measures. RESULTS: High phenylalanine and tryptophan were associated with increased GDM risk (OR: 1.72, 95% CI: 1.07-2.78 and 1.66, 1.02-2.71). The presence of high trimethylamine (TMA) markedly increased the OR of high phenylalanine alone up to 7.95 (2.79-22.71), while the presence of low glycoursodeoxycholic acid (GUDCA) markedly increased the OR of high tryptophan alone up to 22.88 (5.28-99.26), both with significant additive interactions. Furthermore, high lysophosphatidylcholines (LPC18:0) mediated both interactive effects. CONCLUSIONS: High phenylalanine may have an additive interaction with high TMA, while high tryptophan may have an additive interaction with low GUDCA toward increased risk of GDM, both being mediated via LPC18:0.


Assuntos
Diabetes Gestacional , Microbioma Gastrointestinal , Feminino , Humanos , Gravidez , Aminoácidos Aromáticos/metabolismo , Estudos de Casos e Controles , Diabetes Gestacional/epidemiologia , Diabetes Gestacional/metabolismo , População do Leste Asiático , Microbioma Gastrointestinal/fisiologia , Fenilalanina , Estudos Prospectivos , Triptofano
6.
J Am Soc Nephrol ; 32(10): 2529-2541, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34162733

RESUMO

BACKGROUND: Genome-wide mapping of transcription factor (TF) binding sites is essential to identify a TF's direct target genes in kidney development and diseases. However, due to the cellular complexity of the kidney and limited numbers of a given cell type, it has been challenging to determine the binding sites of a TF in vivo. cAMP response element-binding protein (CREB) is phosphorylated and hyperactive in autosomal dominant polycystic kidney disease (ADPKD). We focus on CREB as an example to profile genomic loci bound by a TF and to identify its target genes using low numbers of specific kidney cells. METHODS: Cleavage under targets and release using nuclease (CUT&RUN) assays were performed with Dolichos biflorus agglutinin (DBA)-positive tubular epithelial cells from normal and ADPKD mouse kidneys. Pharmacologic inhibition of CREB with 666-15 and genetic inhibition with A-CREB were undertaken using ADPKD mouse models. RESULTS: CUT&RUN to profile genome-wide distribution of phosphorylated CREB (p-CREB) indicated correlation of p-CREB binding with active histone modifications (H3K4me3 and H3K27ac) in cystic epithelial cells. Integrative analysis with CUT&RUN and RNA-sequencing revealed CREB direct targets, including genes involved in ribosome biogenesis and protein synthesis. Pharmacologic and genetic inhibition of CREB suppressed cyst growth in ADPKD mouse models. CONCLUSIONS: CREB promotes cystogenesis by activating ribosome biogenesis genes. CUT&RUN, coupled with transcriptomic analysis, enables interrogation of TF binding and identification of direct TF targets from a low number of specific kidney cells.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Anilidas/farmacologia , Animais , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Progressão da Doença , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histonas/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Naftalenos/farmacologia , Fosforilação , Rim Policístico Autossômico Dominante/patologia , Análise de Sequência de RNA
7.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296561

RESUMO

Two different pretreatment approaches have been used for the enrichment and separation of biogenic monoamines and metabolites in plasma for high performance liquid chromatography (HPLC) determination. The first approach, based on on-line packed-fiber solid-phase extraction (PFSPE) coupled with HPLC, allows for the simultaneous detection of epinephrine (E), norepinephrine (NE), dopamine (DA), 3-methoxyl epinephrine (MN), norepinephrine (NMN), 3-methoxytyramine (3-MT), and 5-hydroxytryptamin (5-HT). Using this developed on-line PFSPE-HPLC method, the limit of detections (LODs) of the seven analytes ranged from 1 ng/mL (NMN and MN) to 2 ng/mL (NE, E, DA, 3-MT and 5-HT). The reportable ranges were 5-300 ng/mL for NE and DA, 5-100 ng/mL for E, and 5-200 ng/mL for NMN, MN, 3-MT and 5-HT. The off-line PFSPE-HPLC was employed in the second approach and could provide simultaneous detection of NE, E, DA, NMN, and MN. The linearity was verified in the range of 0.5-20 ng/mL (NE, E, and DA) and 20-250 ng/mL (NMN and MN). The LODs of the five analytes ranged from 0.2 ng/mL (NE, E, and DA) to 5 ng/mL (NMN and MN). This study verified the possibility of using nanofibers as an adsorbent in an on-line PFSPE-HPLC system for the determination of biogenic monoamines and their metabolites in human plasma. Compared with the off-line PFSPE approach, the on-line PFSPE method deserves attention mainly due to its greener character, derived from the automation of the process and high-throughput with less operators' handling.


Assuntos
Dopamina , Nanofibras , Humanos , Nanofibras/química , Serotonina , Extração em Fase Sólida/métodos , Monoaminas Biogênicas , Cromatografia Líquida de Alta Pressão/métodos , Norepinefrina , Epinefrina
8.
Xenobiotica ; 51(9): 1047-1059, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34319859

RESUMO

Podophyllotoxin (POD) is a natural compound with antiviral and anticancer activities. The purpose of the present study was to determine the metabolic map of POD in vitro and in vivo.Mouse and human liver microsomes were employed to identify POD metabolites in vitro and recombinant drug-metabolizing enzymes were used to identify the mono-oxygenase enzymes involved in POD metabolism. All in vitro incubation mixtures and bile samples from mice treated with POD were analysed with ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry.A total of 38metabolites, including six phase-I metabolites and 32 phase-II metabolites, of POD were identified from bile and faeces samples after oral administration, and their structures were elucidated through interpreting MS/MS fragmentation patterns.Nine metabolites, including two phase-I metabolites, five glucuronide conjugates, and two GSH conjugates were detected in both human and mouse liver microsome incubation systems and the generation of all metabolites were NADPH-dependent. The main phase-I enzymes involved in metabolism of POD in vitro include CYP2C9, CYP2C19, CYP3A4, and CYP3A5.POD administration to mice caused hepatic and intestinal toxicity, and the cellular damage was exacerbated when 1-aminobenzotriazole, a broad-spectrum inhibitor of CYPs, was administered with POD, indicating that POD, but not its metabolites, induced hepatic and intestinal toxicities.This study elucidated the metabolic map and provides important reference basis for the safety evaluation and rational for the clinical application of POD.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Espectrometria de Massas em Tandem , Animais , Antivirais/toxicidade , Cromatografia Líquida de Alta Pressão , Camundongos , Microssomos Hepáticos , Podofilotoxina
9.
Xenobiotica ; 49(5): 591-601, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29737914

RESUMO

1. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry (UPLC-ESI-QTOF MS)-based lipidomics was employed to elucidate new mechanism of alpha-naphthyl isothiocyanate (ANIT)-induced intrahepatic cholestasis in mice. 2. Multiple lipid components significantly increased in ANIT-induced intrahepatic cholestasis, including PC 16:0, 20:4, PC 16:0, 22:6, PC 16:0, 18:2, LPC 18:2, PC 18:2, LPC 18:1, PC 18:1, 14:0, SM 18:1, 16:0, oleoylcarnitine and palmitoylcarnitine. This alteration of lipid profile was induced by the changed expression of genes choline kinase (Chk) a, sphingomyelin phosphodiesterase (SMPD) and stearoyl-coenzyme A desaturase 1 (SCD1). 3. Knockout of aryl hydrocarbon receptor (Ahr) in mice can significantly reverse ANIT-induced intrahepatic cholestasis, as indicated by lowered ALT, AST and ALP activity, and liver histology. Aryl hydrocarbon receptor knockout significantly reversed ANIT-induced lipid metabolism alteration through regulating the expression of Chka. 4. In conclusion, this study demonstrated ANIT-induced lipid metabolism disruption might be the potential pathogenesis of ANIT-induced intrahepatic cholestasis in mice.


Assuntos
1-Naftilisotiocianato/toxicidade , Colestase Intra-Hepática/induzido quimicamente , Colestase Intra-Hepática/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/patologia , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética
10.
Xenobiotica ; 48(5): 452-458, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28548030

RESUMO

1. Everolimus is an inhibitor of mammalian target of rapamycin (mTOR) and has been clinically utilized to prevent the rejection of organ transplants. This study aims to determine the inhibition of everolimus on the activity of phase-II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs). 2. The results showed that 100 µM of everolimus exerted more than 80% inhibition toward UGT1A1, UGT-1A3 and UGT-2B7. UGT1A3 and UGT2B7 were selected to elucidate the inhibition mechanism, and in silico docking showed that hydrogen bonds and hydrophobic interactions mainly contributed to the strong binding of everolimus toward the activity cavity of UGT1A3 and UGT2B7. Inhibition kinetic-type analysis using Lineweaver-Burk plot showed competitive inhibition toward all these UGT isoforms. The inhibition kinetic parameters (Ki) were calculated to be 2.3, 0.07 and 4.4 µM for the inhibition of everolimus toward UGT1A1, UGT-1A3 and UGT-2B7, respectively. 3. In vitro-in vivo extrapolation (IVIVE) showed that [I]/Ki value was calculated to be 0.004, 0.14 and 0.002 for UGT1A1, UGT-1A3 and UGT-2B7, respectively. Therefore, high DDI potential existed between everolimus and clinical drugs mainly undergoing UGT1A3-catalyzed glucuronidation.


Assuntos
Inibidores Enzimáticos/farmacologia , Everolimo/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Glucuronosiltransferase/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Acoplamento Molecular , Isoformas de Proteínas/metabolismo
11.
Xenobiotica ; 48(3): 250-257, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28285550

RESUMO

1. UDP-glucuronosyltransferases (UGTs) are important drug-metabolizing enzymes (DMEs) catalyzing the glucuronidation elimination of various xenobiotics and endogenous substances. Endogenous substances are important regulators for the activity of various UGT isoforms. Triiodothyronine (T3) and thyroxine (T4) are important thyroid hormones essential for normal cellular differentiation and growth. The present study aims to elucidate the inhibition behavior of T3 and T4 on the activity of UGT isoforms. 2. In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was used to screen the inhibition potential of T3 and T4 on the activity of various UGT isoforms. Initial screening results showed that T4 exerted stronger inhibition potential than T3 on the activity of various UGT isoforms at 100 µM. Inhibition kinetics was determined for the inhibition of T4 on the representative UGT isoforms, including UGT1A1, -1A3, -1A7, -1A8, -1A10 and -2B7. The results showed that T4 competitively inhibited the activity of UGT1A1, -1A3, -1A7, 1A10 and -2B7, and noncompetitively inhibited the activity of UGT1A8. The inhibition kinetic parameters were calculated to be 1.5, 2.4, 11, 9.6, 4.8 and 3.0 µM for UGT1A1, -1A3, -1A7, -1A8, -1A10 and -2B7, respectively. In silico docking method was employed to demonstrate why T4 exerted stronger inhibition than T3 towards UGT1A1. Stronger hydrogen bonds and hydrophobic interaction between T4 and activity cavity of UGT1A1 than T3 contributed to stronger inhibition of T4 towards UGT1A1. 3. In conclusion, more clinical monitoring should be given for the patients with the elevation of T4 level due to stronger inhibition of UGT isoforms-catalyzed metabolism of drugs or endogenous substances by T4.


Assuntos
Glucuronosiltransferase/antagonistas & inibidores , Tiroxina/farmacologia , Tri-Iodotironina/farmacologia , Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/química , Glucuronosiltransferase/metabolismo , Humanos , Ligação de Hidrogênio , Himecromona/metabolismo , Simulação de Acoplamento Molecular , Tiroxina/química , Tri-Iodotironina/química
12.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3170-3182, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28844958

RESUMO

Growth arrest and DNA damage-inducible 45 α (Gadd45α) is a stress-inducible protein that plays an important role in cell survival/death and DNA repair, but its contribution to the development of nonalcoholic steatohepatitis (NASH) has not been investigated. C57BL/6 Gadd45a-null and wild-type (WT) mice were treated with a methionine and choline-deficient diet (MCD) for eight weeks and phenotypic changes examined. Gadd45a-null mice had more severe hepatic inflammation and fibrosis, higher levels of mRNAs encoding pro-inflammatory, pro-fibrotic, and pro-apoptotic proteins, and greater oxidative and endoplasmic reticulum (ER) stress compared with WT mice. Indeed, Gadd45a mRNA was induced in response to ER stress in primary hepatocytes. Lipidomic analysis of NASH livers demonstrated decreased triacylglycerol (TG) in MCD-treated Gadd45a-null mice, which was associated with increased mRNAs encoding phospholipase D (Pld1/2), phosphatidic acid phosphatase type 2A, and choline/ethanolamine phosphotransferase 1 (Cept1), involved in the phosphatidylcholine-phosphatidic acid-diacylglycerol cycle, and decreased mRNAs encoding fatty acid (FA)-binding protein 1 (Fabp1) and FA transport protein 5. Treatment of cultured primary hepatocytes with tumor necrosis factor α, transforming growth factor ß, and hydrogen peroxide led to the corresponding induction of Fabp1, Pld1/2, and Cept1 mRNAs. Collectively, Gadd45α plays protective roles against MCD-induced NASH likely due to attenuating cellular stress and ensuing inflammatory signaling. These results also suggest an interconnection between hepatocyte injury, inflammation and disrupted glycerophospholipid/FA metabolism that yields a possible mechanism for decreased TG accumulation with NASH progression (i.e., "burned-out" NASH).


Assuntos
Proteínas de Ciclo Celular/deficiência , Deficiência de Colina/metabolismo , Glicerofosfolipídeos/metabolismo , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Proteínas Nucleares/deficiência , Animais , Proteínas de Ciclo Celular/metabolismo , Dieta , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/metabolismo , Fosfolipase D/metabolismo , RNA Mensageiro/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
IUBMB Life ; 69(5): 347-354, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28322027

RESUMO

Colorectal cancer (CRC) is the third leading causes of cancer mortality, and the early-stage detection could significantly enhance survival rates. Cancer influences the important metabolic pathways and the changes in metabolite levels had been used in many studies as the potential biomarkers. This study is aimed at screening metabolite biomarkers with CRC diagnosis potentials. The direct infusion mass spectrometry (MS) metabolomic analysis based on dried blood spot was used to distinguish CRC from polyp. The target metabolites were composed of 23 amino acids and 26 acylcarnitines. The 21 metabolites in blood were selected via multivariate analysis. A regression model was established based on parameters C16, Arg, C4/C8, C5/C3, Val, Phe/Tyr, Ala, C4/C3. Tenfold cross validation (CV) method was used to test this model and showed sensitivity of 81.18% and specificity of 83.95%. The metabolomic analysis is a practicable method for CRC detection. The use of direct MS analysis in metabolite screening could be finished in several minutes and served as a higher-throughput method to distinguish CRC and polyps. © 2017 IUBMB Life, 69(5):347-354, 2017.


Assuntos
Pólipos do Colo/diagnóstico , Neoplasias Colorretais/diagnóstico , Teste em Amostras de Sangue Seco/métodos , Metabolômica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Aminoácidos/sangue , Aminoácidos/metabolismo , Carnitina/análogos & derivados , Carnitina/sangue , Carnitina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
14.
Xenobiotica ; 47(5): 376-381, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27359323

RESUMO

1. The exposed level of vitamin A in plasma might be exceeded due to the both inadvertent and clinical utilization. The adverse effects of vitamin A have been frequently reported, however, the mechanism remains unclear. The inhibition of vitamin A on the activity of UDP-glucuronosyltransferases (UGTs) was determined using in vitro incubation system to explain the adverse effects of vitamin A from a new perspective. 2. UGT supersomes catalyzed glucuronidation of 4-methylumbelliferone (4-MU), trifluoperazine (TFP), and cotinine was used as the probe reaction to evaluate the inhibition of vitamin A toward UGT isoforms, and 100 µM of vitamin A significantly inhibited the activity of all the tested UGT isoforms. Vitamin A exerted competitive inhibition on the activity of UGT1A1, 2B4, 2B7, and 2B15, and the inhibition kinetic parameters (Ki) were calculated to be 31.1, 16.8, 2.2, and 11.6 µM for UGT1A1, 2B4, 2B7, and 2B15. In silico docking method was used to try to elucidate the inhibition mechanism of vitamin A toward UGT2B7. The results showed the significant contribution of hydrogen bonds and hydrophobic interaction on the UGT2B7 inhibition by vitamin A. 3. The present study provides a new perspective for the adverse effects of vitamin A through reporting the inhibition of vitamin A on the activity of important phase II drug-metabolizing enzymes UGTs, which benefits our deep understanding of mechanism of vitamin A's adverse effects when high exposure of vitamin A occurs.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/metabolismo , Vitamina A/farmacologia , Inibidores Enzimáticos/metabolismo , Himecromona , Cinética , Vitamina A/metabolismo
15.
Arch Toxicol ; 91(5): 2235-2244, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27853831

RESUMO

Alpha-naphthyl isothiocyanate (ANIT)-induced liver damage is regarded as a useful model to study drug-induced cholestatic hepatitis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry (UPLC-ESI-QTOF MS)-based metabolomics revealed clues to the mechanism of ANIT-induced liver injury, which facilitates the elucidation of drug-induced liver toxicity. 1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC 18:0) and 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC 18:1) were significantly increased in serum from ANIT-treated mice, and this increase resulted from altered expression of genes encoding the lipid metabolism enzymes Chka and Scd1. ANIT also increased NF-κB/IL-6/STAT3 signaling, and in vitro luciferase reporter gene assays revealed that LPC 18:0 and LPC 18:1 can activate NF-κB in a concentration-dependent manner. Activation of PPARα through feeding mice a Wy-14,643-containing diet (0.1%) reduced ANIT-induced liver injury, as indicated by lowered ALT and AST levels, and liver histology. In conclusion, the present study demonstrated a role for the lipid-regulated NF-κB/IL-6/STAT3 axis in ANIT-induced hepatotoxicity, and that PPARα may be a potential therapeutic target for the prevention of drug-induced cholestatic liver injury.


Assuntos
1-Naftilisotiocianato/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , PPAR alfa/genética , PPAR alfa/metabolismo , Pirimidinas/farmacologia
16.
Molecules ; 22(6)2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28621744

RESUMO

Mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera Indica L., has been investigated extensively because of its remarkable pharmacological effects. In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was used to investigate the inhibition of mangiferin and aglycone norathyriol towards various isoforms of UGTs in our study, which evaluated the inhibitory capacity of MGF and its aglycone norathyriol (NTR) towards UDP-glucuronosyltransferase (UGT) isoforms. Initial screening experiment showed that deglycosylation of MGF into NTR strongly increased the inhibitory effects towards almost all the tested UGT isoforms at a concentration of 100 µM. Kinetic experiments were performed to further characterize the inhibition of UGT1A3, UGT1A7 and UGT1A9 by NTR. NTR competitively inhibited UGT1A3, UGT1A7 and UGT1A9, with an IC50 value of 8.2, 4.4, and 12.3 µM, and a Ki value of 1.6, 2.0, and 2.8 µM, respectively. In silico docking showed that only NTR could dock into the activity cavity of UGT1A3, UGT1A7 and UGT1A9. The binding free energy of NTR to UGT1A3, 1A7, 1A9 were -7.4, -7.9 and -4.0 kcal/mol, respectively. Based on the inhibition evaluation standard ([I]/Ki < 0.1, low possibility; 0.1 < [I]/Ki < 1, medium possibility; [I]/Ki > 1, high possibility), an in vivo herb-drug interaction between MGF/NTR and drugs mainly undergoing UGT1A3-, UGT1A7- or UGT1A9-catalyzed metabolism might occur when the plasma concentration of NTR is above 1.6, 2.0 and 2.8 µM, respectively.


Assuntos
Glucuronosiltransferase/metabolismo , Isoenzimas/metabolismo , Xantonas/química , Glucuronosiltransferase/antagonistas & inibidores , Interações Ervas-Drogas , Isoenzimas/antagonistas & inibidores , Xantenos/química
17.
Yao Xue Xue Bao ; 52(1): 66-70, 2017 01.
Artigo em Zh | MEDLINE | ID: mdl-29911771

RESUMO

Praeruptorin C (PC), D (PD) and E (PE) are important compounds extracted from Peucedanum praeruptorum DUNN and have been reported to exert multiple pharmacological activities. The present study is purposed to determine the inhibition of PC, PD and PE on the activity of important phase I metabolic enzymes ­ carboxylesterases (CES). In vitro human liver microsomes (HLM) incubation system was used to determine the inhibition potential of PC, PD and PE on the activity of CES1 and CES2. Inhibition behaviour was determined, and in vitro-in vivo extrapolation was performed by using the combination of in vitro inhibition kinetic parameter (K(I)) and in vivo exposure level of PD. PD exhibited the strongest inhibition on the activity of CES1, with 81.7% activity inhibited by 100 µmol·L(-1) of PD. PD noncompetitively inhibited the activity of CES1 with the K(I) to be 122.2 µmol·L(-1), indicating inhibition potential of PD towards CES1 in vivo. Therefore, closely monitoring the endogenous metabolic disorders caused by PD and interaction between PD and drugs mainly undergoing CES1-catalyzed metabolism is very necessary.


Assuntos
Carboxilesterase/antagonistas & inibidores , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Cumarínicos/farmacologia , Apiaceae/química , Humanos , Cinética , Microssomos Hepáticos
18.
Pharm Biol ; 55(1): 1703-1709, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28466663

RESUMO

CONTENTS: Danshen is a popular herb employed to treat cardiovascular and cerebrovascular diseases worldwide. Danshen-drug interaction has not been well studied. OBJECTIVE: The inhibitory effects of four major tanshinones (tanshinone I, tanshinone IIA, cryptotanshinone, and dihydrotanshinone I) on UDP-glucuronosyltransferases (UGTs) isoforms were determined to better understand the mechanism of danshen-prescription drugs interaction. MATERIALS AND METHODS: In vitro recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed. Tanshinones (100 µM) was used to perform the initial screening of inhibition capability. High-performance liquid chromatography (HPLC) was used to separate 4-MU and its glucuronide. In vitro-in vivo extrapolation (IV-IVE) was employed to predict in vivo inhibition situation. RESULTS: Cryptotanshinone inhibited UGT1A7 and UGT1A9 with IC50 values of 1.91 ± 0.27 and 0.27 ± 0.03 µM, respectively. Dihydrotanshinone I inhibited UGT1A9-catalyzed 4-MU glucuronidation reaction with the IC50 value of 0.72 ± 0.04 µM. The inhibition of cryptotanshinone towards UGT1A7 and UGT1A9 was best fit to competitive inhibition type, and UGT1A9 was non-competitively inhibited by dihydrotanshinone I. Using in vitro inhibition kinetic parameters (Ki) and in vivo maximum plasma concentration (Cmax) of cryptotanshinone and dihydrotanshinone I, the change of area-under-the-concentration-time curve (AUC) was predicted to be 0.4-4.2%, 3.7-56.3%, and 0.6-6.4% induced by cryptotanshinone and dihydrotanshinone inhibition towards UGT1A7 and UGT1A9, respectively. DISCUSSION AND CONCLUSION: The inhibitory effects of tanshinones towards important UGT isoforms were evaluated in the present study, which provide helpful information for exploring the mechanism of danshen-clinical drugs interaction.


Assuntos
Abietanos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Fenantrenos/farmacologia , Salvia miltiorrhiza/química , Abietanos/administração & dosagem , Abietanos/farmacocinética , Animais , Área Sob a Curva , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Interações Ervas-Drogas , Concentração Inibidora 50 , Isoenzimas , Fenantrenos/administração & dosagem , Fenantrenos/farmacocinética , Ratos
19.
Biochim Biophys Acta ; 1852(3): 473-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25533124

RESUMO

SLC25A13 (citrin or aspartate-glutamate carrier 2) is located in the mitochondrial membrane in the liver and its genetic deficiency causes adult-onset type II citrullinemia (CTLN2). CTLN2 is one of the urea cycle disorders characterized by sudden-onset hyperammonemia due to reduced argininosuccinate synthase activity. This disorder is frequently accompanied with hepatosteatosis in the absence of obesity and ethanol consumption. However, the precise mechanism of steatogenesis remains unclear. The expression of genes associated with fatty acid (FA) and triglyceride (TG) metabolism was examined using liver samples obtained from 16 CTLN2 patients and compared with 7 healthy individuals. Although expression of hepatic genes associated with lipogenesis and TG hydrolysis was not changed, the mRNAs encoding enzymes/proteins involved in FA oxidation (carnitine palmitoyl-CoA transferase 1α, medium- and very-long-chain acyl-CoA dehydrogenases, and acyl-CoA oxidase 1), very-low-density lipoprotein secretion (microsomal TG transfer protein), and FA transport (CD36 and FA-binding protein 1), were markedly suppressed in CTLN2 patients. Serum concentrations of ketone bodies were also decreased in these patients, suggesting reduced mitochondrial ß-oxidation activity. Consistent with these findings, the expression of peroxisome proliferator-activated receptor α (PPARα), a master regulator of hepatic lipid metabolism, was significantly down-regulated. Hepatic PPARα expression was inversely correlated with severity of steatosis and circulating ammonia and citrulline levels. Additionally, phosphorylation of c-Jun-N-terminal kinase was enhanced in CTLN2 livers, which was likely associated with lower hepatic PPARα. Collectively, down-regulation of PPARα is associated with steatogenesis in CTLN2 patients. These findings provide a novel link between urea cycle disorder, lipid metabolism, and PPARα.


Assuntos
Citrulinemia/metabolismo , Regulação para Baixo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias Hepáticas/metabolismo , PPAR alfa/biossíntese , Adulto , Citrulinemia/complicações , Citrulinemia/genética , Citrulinemia/patologia , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Corpos Cetônicos/genética , Corpos Cetônicos/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia , Proteínas de Transporte da Membrana Mitocondrial , PPAR alfa/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Triglicerídeos/genética , Triglicerídeos/metabolismo
20.
Toxicol Appl Pharmacol ; 301: 42-9, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27089846

RESUMO

Tolcapone and entacapone are two potent catechol-O-methyltransferase (COMT) inhibitors with a similar skeleton and displaying similar pharmacological activities. However, entacapone is a very safe drug used widely in the treatment of Parkinson's disease, while tolcapone is only in limited use for Parkinson's patients and needs careful monitoring of hepatic functions due to hepatotoxicity. This study aims to investigate and compare the inhibitory effects of entacapone and tolcapone on human UDP-glucosyltransferases (UGTs), as well as to evaluate the potential risks from the view of drug-drug interactions (DDI). The results demonstrated that both tolcapone and entacapone exhibited inhibitory effects on UGT1A1, UGT1A7, UGT1A9 and UGT1A10. In contrast to entacapone, tolcapone exhibited more potent inhibitory effects on UGT1A1, UGT1A7, and UGT1A10, while their inhibitory potentials against UGT1A9 were comparable. It is noteworthy that the inhibition constants (Ki) of tolcapone and entacapone against bilirubin-O-glucuronidation in human liver microsomes (HLM) are determined as 0.68µM and 30.82µM, respectively, which means that the inhibition potency of tolcapone on UGT1A1 mediated bilirubin-O-glucuronidation in HLM is much higher than that of entacapone. Furthermore, the potential risks of tolcapone or entacapone via inhibition of human UGT1A1 were quantitatively predicted by the ratio of the areas under the plasma drug concentration-time curve (AUC). The results indicate that tolcapone may result in significant increase in AUC of bilirubin or the drugs primarily metabolized by UGT1A1, while entacapone is unlikely to cause a significant DDI through inhibition of UGT1A1.


Assuntos
Antiparkinsonianos/farmacologia , Benzofenonas/farmacologia , Catecóis/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Nitrilas/farmacologia , Nitrofenóis/farmacologia , Animais , Bilirrubina/metabolismo , Inibidores de Catecol O-Metiltransferase/farmacologia , Linhagem Celular , Glucuronídeos/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Himecromona/farmacologia , Insetos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Tolcapona , Trifluoperazina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA