Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(1): e2204454, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36382574

RESUMO

Piezoelectric materials should simultaneously possess the soft properties (high piezoelectric coefficient, d33 ; high voltage coefficient, g33 ; high electromechanical coupling factor, k) and hard properties (high mechanical quality factor, Qm ; low dielectric loss, tan δ) along with wide operation temperature (e.g., high rhombohedral-tetragonal phase transition temperature Tr-t ) for covering off-resonance (figure of merit (FOM), d33  × g33 ) and on-resonance (FOM, Qm  × k2 ) applications. However, achieving hard and soft piezoelectric properties simultaneously along with high transition temperature is quite challenging since these properties are inversely related to each other. Here, through a synergistic design strategy of combining composition/phase selection, crystallographic texturing, defect engineering, and water quenching technique, <001> textured 2 mol% MnO2 doped 0.19PIN-0.445PSN-0.365PT ceramics exhibiting giant FOM values of Qm  × k 31 2 $k_{31}^2$ (227-261) along with high d33  × g33 (28-35 × 10-12 m2 N-1 ), low tan δ (0.3-0.39%) and high Tr-t of 140-190 °C, which is far beyond the performance of the state-of-the-art piezoelectric materials, are fabricated. Further, a novel water quenching (WQ) room temperature poling technique, which results in enhanced piezoelectricity of textured MnO2 doped PIN-PSN-PT ceramics, is reported. Based upon the experiments and phase-field modeling, the enhanced piezoelectricity is explained in terms of the quenching-induced rhombohedral phase formation. These findings will have tremendous impact on development of high performance off-resonance and on-resonance piezoelectric devices with high stability.

2.
Nano Lett ; 9(8): 2873-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19719106

RESUMO

We report a direct correlation between carrier mobility and Raman topography of epitaxial graphene (EG) grown on silicon carbide (SiC). We show the Hall mobility of material on SiC(0001) is highly dependent on thickness and monolayer strain uniformity. Additionally, we achieve high mobility epitaxial graphene (18100 cm(2)/(V s) at room temperature) on SiC(0001) and show that carrier mobility depends strongly on the graphene layer stacking.

3.
ACS Nano ; 5(10): 8062-9, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21905713

RESUMO

We present a novel method for the direct metal-free growth of graphene on sapphire that yields high quality films comparable to that of graphene grown on SiC by sublimation. Graphene is synthesized on sapphire via the simple decomposition of methane at 1425-1600 °C. Film quality was found to be a strong function of growth temperature. The thickness, structure, interface characteristics, and electrical transport properties were characterized in order to understand the utility of this material for electronic devices. Graphene synthesized on sapphire is found to be strain relieved, with no evidence of an interfacial buffer layer. There is a strong correlation between the graphene structural quality and carrier mobility. Room temperature Hall effect mobility values were as high as 3000 cm(2)/(V s), while measurements at 2 K reached values of 10,500 cm(2)/(V s). These films also display evidence of the quantum Hall effect. Field effect transistors fabricated from this material had a typical current density of 200 mA/mm and transconductance of 40 mS/mm indicating that material performance may be comparable to graphene on SiC.

4.
ACS Nano ; 4(1): 153-8, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20000439

RESUMO

A promising route for the synthesis of large-area graphene, suitable for standard device fabrication techniques, is the sublimation of silicon from silicon carbide at elevated temperatures (>1200 degrees C). Previous reports suggest that graphene nucleates along the (110n) plane, known as terrace step edges, on the silicon carbide surface. However, to date, a fundamental understanding of the nucleation of graphene on silicon carbide is lacking. We provide the first direct evidence that nucleation of epitaxial graphene on silicon carbide occurs along the (110n) plane and show that the nucleated graphene quality improves as the synthesis temperature is increased. Additionally, we find that graphene on the (110n) plane can be significantly thicker than its (0001) counterpart and appears not to have a thickness limit. Finally, we find that graphene along the (110n) plane can contain a high density of structural defects, often the result of the underlying substrate, which will undoubtedly degrade the electronic properties of the material. Addressing the presence of non-uniform graphene that may contain structural defects at terrace step edges will be key to the development of a large-scale graphene technology derived from silicon carbide.

5.
ACS Nano ; 4(5): 2667-72, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20415460

RESUMO

We present the integration of epitaxial graphene with thin film dielectric materials for the purpose of graphene transistor development. The impact on epitaxial graphene structural and electronic properties following deposition of Al(2)O(3), HfO(2), TiO(2), and Ta(2)O(5) varies based on the choice of dielectric and deposition parameters. Each dielectric film requires the use of a nucleation layer to ensure uniform, continuous coverage on the graphene surface. Graphene quality degrades most severely following deposition of Ta(2)O(5), while the deposition if TiO(2) appears to improve the graphene carrier mobility. Finally, we discuss the potential of dielectric stack engineering for improved transistor performance.

6.
Nano Lett ; 9(3): 964-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19182912

RESUMO

We report results of Raman spectroscopy studies of large-area epitaxial graphene grown on SiC. Our work reveals unexpectedly large variation in Raman shift resulting from graphene strain inhomogeneity, which is shown to be correlated with physical topography by coupling Raman spectroscopy with atomic force microscopy. We show that graphene strain can vary over a distance shorter than 300 nm and may be uniform only over roughly 1 microm. We show that nearly strain-free graphene is possible even in epitaxial graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA