Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(23): 6069-6113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35057682

RESUMO

There is a growing need for healthier foods with no trans and reduced saturated fat. However, solid fats play critical roles in texture and sensory attributes of food products, making it challenging to eliminate them in foods. Recently, the concept of oleogelation as a novel oil structuring technique has received numerous attentions owing to their great potential to mimic the properties of solid fats. Understanding textural, rheological and sensory properties of oleogels helps predict the techno-functionalities of oleogels to replace solid fats in food products. This research critically reviews the textural and rheological properties of oleogels prepared by low molecular weight oleogelators (LMWGs) and functional characteristics of foods formulated by these oleogels. The mechanical properties of LMWG-containing oleogels are comprehensively discussed against conventional solid fats. The interactions between the oleogel and its surrounding food matrix are explained, and the sensory attributes of oleogel containing reformulated products are highlighted. Scientific insights into the texture and rheological properties of oleogels manufactured with a wide range of low molecular gelators and their related products are provided in order to boost their implication for creating healthier foods with high consumer acceptability. Future research opportunities on low molecular weight gelators are also discussed.


Assuntos
Ácidos Graxos , Compostos Orgânicos , Peso Molecular , Reologia
2.
Crit Rev Food Sci Nutr ; 63(24): 6840-6859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35225100

RESUMO

Infrared (IR) radiation is part of an electromagnetic spectrum between the ultraviolet and microwave regions. IR radiation impacts the surface of the food, generating heat that can be used as an efficient drying technique. Apart from drying, IR heating is an emerging food processing technology with applications in baking, roasting, microbial inactivation, insect control, extraction for antioxidant recovery, peeling, and blanching. Physicochemical properties such as texture, color, hardness, total phenols, and antioxidants capability of foods are essential quality attributes that affect the food quality. In this regard, the main objective of this review study was to highlight and discuss the effects of IR heating on food quality to expand its food applications and commercial adoption. The fundamental mechanisms, type of emitters, and IR processing parameters are discussed in this review to explore their impacts on food quality. Infrared heating has been shown that the appropriate operating conditions (distance, exposure time, IR power, and temperature) with high heat transfer, thus leading to a shorter drying time. Besides, IR heating used in food processing to improve food-surface color and flavor, it also enhances hardness, firmness, shrinkage, crispiness, and viscosity. Meanwhile, antioxidant activity is enhanced, and some nutrients are retained.


Assuntos
Alimentos , Calefação , Manipulação de Alimentos/métodos , Qualidade dos Alimentos , Antioxidantes/análise
3.
Crit Rev Food Sci Nutr ; 63(12): 1733-1754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34445909

RESUMO

With the fast-global development of packaging techniques, the potential antimicrobial effect of CO2, as a safe, cheap and readily available gas, makes it the integral component for packaging of meat products. The associated spoilage and/or pathogenic bacteria on raw meat may respond in different ways to elevated CO2 concentrations. The growth of some aerobic Gram-negative bacteria such as Pseudomonas spp. is significantly inhibited but some LAB bacteria may be allowed to grow faster and dominate the product. The antimicrobial efficacy of enriched CO2 packaging is attributed to the rate of CO2 solubility in the product which is itself affected by the level of headspace CO2, product pH, temperature and the ratio of headspace gas to product (G:P). This review, first, explores the varied range of beef and sheep meat spoilage and pathogenic bacteria and the intrinsic and extrinsic parameters that may influence the pattern of microbial growth and meat spoilage rate during storage. Then, the antimicrobial mechanism of elevated CO2 packaging will be discussed and the different approaches of achieving enriched CO2 packaging i.e. the traditional technique of flushing a desired gas mixture and/or using the new commercially developed CO2 emitters will then be compared in terms of their strengths, limitations and technical mode of action.


Assuntos
Anti-Infecciosos , Carne Vermelha , Bovinos , Animais , Ovinos , Dióxido de Carbono/análise , Embalagem de Alimentos/métodos , Bactérias , Carne Vermelha/microbiologia , Carne , Microbiologia de Alimentos
4.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37303155

RESUMO

Fenugreek (Trigonella foenum-graecum L.) is a pharmaceutically significant aromatic crop with health benefits linked to its phytochemicals. This article aims to overview progress in using emerging technologies to extract its bioactive compounds and extraction mechanisms. Also, the trends in the applications of this herb in the food industry and its therapeutical effects were explained. Fenugreek's flavor is the primary reason for its applications in the food industry. At the same time, it has antimicrobial, antibacterial, hepatoprotection, anticancer, lactation, and antidiabetic effects. Phytochemicals responsible for these effects include galactomannans, saponins, alkaloids, and polyphenols. Besides, data showed that emerging technologies boost fenugreek extracts' yield and biological activity. Among these, ultrasound (55.6%) is the most studied technology, followed by microwave (37.0%), cold plasma (3.7%), and combined approaches (3.7%). Processing conditions (e.g., treatment time and intensity) and solvent (type, ratio, and concentration) are significant parameters that affect the performance of these novel extraction technologies. Extracts obtained by sustainable energy-saving emerging technologies can be used to develop value-added health-promoting products.


Fenugreek's phytochemicals (e.g., galactomannans and polyphenols) have therapeutic effectsUltrasound and microwave are major emerging technologies for fenugreek's bioactive compound extractionEmerging technologies enhance the yield and biological activities of fenugreek extractsEmerging extraction technologies can develop fenugreek-based products with health benefits.

5.
Crit Rev Food Sci Nutr ; 63(9): 1170-1186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34357823

RESUMO

Sorghum grain is a staple food for about 500 million people in 30 countries in Africa and Asia. Despite this contribution to global food production, most of the world's sorghum grain, and nearly all in Western countries, is used as animal feed. A combination of the increasingly important ability of sorghum crops to resist heat and drought, the limited history of the use of sorghum in Western foods, and the excellent functional properties of sorghum grain in healthy diets, suggests a greater focus on the development of new sorghum-based foods. An understanding of the structural and functional properties of sorghum grain to develop processes for production of new sorghum-based foods is required. In this review, we discuss the potential of sorghum in new food products, including sorghum grain composition, the functional properties of sorghum in foods, processing of sorghum-based products, the digestibility of sorghum protein and starch compared to other grains, and the health benefits of sorghum. In the potential for sorghum as a major ingredient in new foods, we suggest that the gluten-free status of sorghum is of relatively minor importance compared to the functionality of the slowly digested starch and the health benefits of the phenolic compounds present.


Assuntos
Sorghum , Animais , Sorghum/química , Grão Comestível/química , Amido/química , Ração Animal/análise , África
6.
Crit Rev Food Sci Nutr ; 62(28): 7801-7826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33966555

RESUMO

There is a growing need for clean and green labeling of food products among consumers globally. Therefore, development of green modified starches, to boost functionality, palatability and health benefits while reducing the negative processing impacts on the environment and reinforcing consumer safety is in high demand. Starch modification started in mid-1500s due to the inherent limitations of native starch restricting its commercial applications, with chemical modification being most common. However, with the recent push for "chemical-free" labeling, methods of physical and enzymatic modification have gained immense popularity. These methods have been successfully used in numerous studies to alter the composition, structure, functionality and digestibility of starch and in this review, studies reported on green modification of cassava starch, one of the most common utilized starches, within the last ten years have been critically reviewed. Recent research has introduced starch as an abundant, natural substrate for producing resistant starches through biophysical technologies that act as dietary fiber in the human body. It is evident that different techniques and processing parameters result in varying degrees of modification impacting the techno-functionality and digestibility of the resultant starch. This can be exploited by researchers and industrialists in order to customize starch functionality in accordance with application.


Assuntos
Manihot , Fibras na Dieta , Humanos , Manihot/química , Amido/química
7.
Appetite ; 169: 105832, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896167

RESUMO

Increasing global populations and limitations on the natural resources required in food production such as land and water will place further pressure on an already strained food production system. To meet the future food production requirements, it is essential to find viable alternatives to current food sources, without the high resource challenges. Protein production is of particular concern and insects are a nutritious and sustainable source yet, despite a rich history in parts of the world, Australians have been reluctant to adopt the practice as a societal norm. This study aimed to explore Australian consumers' experiences with edible insects, identify barriers to consumption, and explore possible factors that may motivate Australians to consume insects. A total of 601 participants (23.8% male, 76.2% female), completed an online survey using a variety of open-ended questions; 5- or 7-point Likert scales and check-all-that-apply questions. Consumer willingness was measured through self-reporting willingness-to-try insects or insect-based foods. Results indicated 35.4% of participants had previously consumed insects, with Orthoptera (crickets, grasshoppers) the most commonly consumed order (60.1%). Participants with no previous experience consuming insects cited 'lack of opportunity' as the main reason (57.2%). 'Increased accessibility' (56.6%) and 'increased nutrition knowledge' (56.6%) were identified as major factors that may increase the likelihood of future insect consumption. Participants reporting that they were willing to try insects were most likely to accept 'insect-based flour' (65.6%) and 'chocolate-covered ants' (52.1%). By providing increased opportunity, accessibility and education of insect-based food products, a higher proportion of Australians may be willing to eat insects, particularly if presented in indistinguishable forms (i.e. flour). This may lead to a greater acceptance of insects as an alternative, more sustainable protein source than previously anticipated.


Assuntos
Insetos Comestíveis , Animais , Austrália , Comportamento do Consumidor , Feminino , Farinha , Humanos , Insetos , Masculino
8.
Compr Rev Food Sci Food Saf ; 21(6): 4573-4609, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36120912

RESUMO

High-moisture extrusion cooking (HMEC) is an efficient method for converting proteins and polysaccharides into fibrous structure that is used in the industrial production of meat analogs. The purpose of this review is to systematically evaluate current knowledge regarding the modification of protein structure including denaturation and reassembly upon extrusion processing and to correlate this understanding to the structure of the final products. Although there is no consensus on the relative importance of a certain type of bond on extrudates' structure, literature suggests that, regardless of moisture level, these linkages and interactions give rise to distinctive hierarchical order. Both noncovalent and disulfide bonds contribute to the extrudates' fibrous structure. At high water levels, hydrogen and disulfide bonds play a dominant role in extrudates' texture. The process parameters including cooking temperature, screw speed, and moisture content have significant albeit different levels of impact on the texturization process. Their correlation with the ingredients' physiochemical properties provides a greater insight into the process-structure-function relationship of meat analogs. The tendency of protein and polysaccharide blends to phase separate rather than produce a homogeneous mix is a particularly important aspect that leads to the formation of fibrous layers when extruded. This review shows that systematic studies are required to measure and explain synergistic and competitive interactions between proteins and other ingredients such as carbohydrates with a focus on their incompatibility. The wide range of plant protein source can be utilized in the HMEC process to produce texturized products, including meat analogs.


Assuntos
Culinária , Manipulação de Alimentos , Manipulação de Alimentos/métodos , Solubilidade , Culinária/métodos , Carne , Dissulfetos
9.
Compr Rev Food Sci Food Saf ; 21(3): 2873-2897, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35279951

RESUMO

Pulses provide economic and health benefits to people in many countries around the world; however, their adoption in western diets, particularly in processed and formulated foods, is limited. One strategy to increase the level of pulses in western diets is to improve pulse accessibility to the ready-to-eat (RTE) food market sector. Pulses have compositional and structural differences when compared to cereals and behave differently during processing. While there have been numerous studies on pulses processed using traditional processing methods, there are limited studies describing processing of pulses as a major ingredient in RTE forms such as flakes. To understand the full processing potential of pulses, systematic studies are required using commercial-scale RTE pilot processing equipment coupled with fundamental property determination techniques to evaluate the effects of processing and pulse material on pulse flake attributes. In-depth studies of pulse properties and their processability are likely to result in the production of high-quality pulse-based foods with superior health benefits. This review explores the current and potential opportunities for processing pulses with a focus on flake products. The roles of pulse type and major structure-forming components such as fiber, carbohydrates, and proteins on end-product quality of processed pulses are discussed.


Assuntos
Fibras na Dieta , Grão Comestível , Fibras na Dieta/análise , Grão Comestível/química , Humanos
10.
J Food Sci Technol ; 52(7): 4186-95, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26139883

RESUMO

The current investigation presents an exploration in phase behaviour of carboxymethyl cellulose (CMC) produced from pomegranate seed pips compared to low and high viscosity CMCs (LMCMC and HMCMC) primarily at low solid concentrations. Cellulose was extracted with 10 % NaOH at 35 °C for 22 h from pomegranate seed pips and converted to CMC by etherification process. Thermomechanical analysis and micro-imaging were carried out using small deformation dynamic oscillation in shear, modulated differential scanning calorimetry (MDSC) and scanning electron microscopy (SEM). The results emphasize the importance of molecular interaction and the degree of substitution in produced CMC. Thermal gravimetric analysis (TGA) thermograms showed an initial weight loss in pomegranate seed pips CMC (PSCMC) sample, which we attribute to presence of amount of moisture in sample powder. MDSC analysis of PSCMC showed five different peaks at 84, 104, 173, 307 and 361 °C. Moreover, G' and G" changes were found to be dependent on both concentration and frequency. The results of frequency sweep and tan δ indicate that PSCMC solutions can be classified as weak gels.

11.
J Food Sci Technol ; 51(10): 2755-61, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25328222

RESUMO

With the aim of reducing phytic acid content of wheat bran, particle size reduction (from 1,200 to 90 µm), hydrothermal (wet steeping in acetate buffer at pH 4.8 at 55 °C for 60 min) and fermentation (using bakery yeast for 8 h at 30 °C) and combination of these treatments with particle size reduction were applied and their effects on some properties of the bran were studied. Phytic acid content decreased from 50.1 to 21.6, 32.8 and 43.9 mg/g after particle size reduction, hydrothermal and fermentation, respectively. Particle size reduction along with these treatments further reduced phytic acid content up to 76.4 % and 57.3 %, respectively. Hydrothermal and fermentation decreased, while particle size reduction alone or in combination increased bran lightness. With reducing particle size, total, soluble and insoluble fiber content decreased from 69.7 to 32.1 %, 12.2 to 7.9 % and 57.4 to 24.3 %, respectively. The highest total (74.4 %) and soluble (21.4 %) and the lowest insoluble fiber (52.1 %) content were determined for the hydrothermaled bran. Particle size reduction decreased swelling power, water solubility and water holding capacity. Swelling power and water holding capacity of the hydrothermaled and fermented brans were lower, while water solubility was higher than the control. The amount of Fe(+2), Zn(+2) and Ca(+2) decreased with reducing particle size. Fermentation had no effect on Fe(+2)and Zn(+2) but slightly reduced Ca(+2). The hydrothermal treatment slightly decreased these elements. Amongst all, hydrothermal treatment along with particle size reduction resulted in the lowest phytic acid and highest fiber content.

12.
Foods ; 13(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39200420

RESUMO

The surge in the global demand for plant-based proteins has catapulted pulse protein into the spotlight. To ensure economic viability and sustainable production, it is crucial to utilize pulse starch, a by-product of plant protein fractionation. Despite the increasing interest in pulse starches, there is a notable gap in knowledge regarding their modifications and applications compared to cereal and tuber starches. Non-thermal techniques such as electron beam radiation, static high pressure, microfluidization, and cold plasma are emerging as innovative methods for starch modification. These techniques offer significant advantages, including enhanced safety, environmental sustainability, and the development of unique functional properties unattainable through conventional methods. However, challenges such as equipment availability, high costs, and energy consumption hinder their widespread adoption. In light of the growing emphasis on "clean and green labelling" and effective "waste management" in food production, evaluating non-thermal techniques for pulse starch modification is critical. This review aims to thoroughly assess these non-thermal techniques and their combinations, offering valuable insights for researchers and the food industry. By maximizing the potential of pulse starches in innovative food applications, it provides a comprehensive guide for effective non-thermal methods that add value and align with sustainable practices.

13.
J Food Sci ; 89(7): 4372-4388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837376

RESUMO

High concentrations of carnauba waxes (CRWs) that can compromise organoleptic properties are required to create self-sustained and functional oleogels. The weak physical properties and stability of 4% w/w CRW-rice bran oil (RBO) oleogel were addressed by substituting CRW with beeswax (BW) in different weight ratios. The texture profile analyzer revealed that substituting only 10% (weight ratio) of CRW with BW improved the hardness compared to the mono-CRW oleogel. The hardness of binary oleogels increased gradually as the proportion of BW increased. At a BW ratio of 70% or more, the hardness was three times higher than that of mono-BW oleogel. Rheology analysis showed the same trend as the large deformation test; however, the hardest binary oleogels had lower critical strain and yield point compared to the mono-wax oleogels, implying that they are more prone to lose their structure upon applied stress. Nevertheless, nearly all binary mixtures (except for 10%BW90%CRW) showed oil-binding capacities above 99%, suggesting improved nucleation and crystallization process. Polarized light microscopy showed the coexistence of BW and CRW crystals and changes in the size and arrangement of wax crystals upon proportional changes of the two waxes. X-ray diffraction confirmed no differences in the peaks' location, and all oleogels had ß' polymorphism. Differential scanning calorimetry showed eutectic melting behavior in some binary blends. Oxidation stability in the binary wax oleogels improved as compared to the mono-wax oleogel and bulk RBO. BW and CRW mixtures have promising oil-structuring abilities and have various properties at different ratios that have the potential to be used as solid fat substitutes. PRACTICAL APPLICATION: As a trending green oil-structuring technology, oleogelation has shown great potential to reduce saturated fats in food systems. The current research provides valuable fundamental information on the strong synergistic interactions between beeswax and carnauba wax that have the potential to be used as solid fat substitutes created with a much lower total concentration of the required wax. This will help create wax oleogels with better organoleptic properties and less negative waxy mouthfeel. Such knowledge could prove beneficial for the development of healthy products that have potential applications in meat, bakery, dairy, pharmaceutical, as well as cosmetic industries.


Assuntos
Compostos Orgânicos , Oxirredução , Reologia , Ceras , Ceras/química , Compostos Orgânicos/química , Difração de Raios X
14.
Food Res Int ; 195: 114970, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277267

RESUMO

Lupins, and other legumes, have attained international interest due to their reported remarkable health benefits. Currently, the seed coats are discarded as waste or animal feed. The research presented here summarizes the potential for incorporating the seed coats into 'whole grain' foods. We aimed to identify metabolites found in the seed coats of nine commercial Australian cultivars of lupin (Lupinus angustifolius and L. albus species), and to evaluate and compare their functional, nutritional, antioxidant, and antidiabetic properties, along with in silico exploration of mechanisms of action for selected identified secondary metabolites. The seed coats were found to contain 79 to 90% dietary fibers and substantial quantity of essential macrometals. LC-QTOF MS-based, untargeted bioactive metabolite profiling explored a total of 673 chemical entities, and identified 63 bioactive secondary metabolites including: biophenols, unsaturated fatty acids, triterpenoids, alkaloids, and dietary prebiotics (insoluble fibers). The seed coats from these nine cultivars show substantial antioxidant activity. The cultivars of L. angustifolius inhibit α-amylase and α-glucosidase significantly in vitro. Moreover, in silico docking and dynamic simulation along with ADME/T analysis suggest that quercetin 3-methyl ether and 8-C-methylquercetin 3-methyl ether as molecules, novel in lupin seed coats, are responsible for the α-amylase and α-glucosidase inhibition. The findings indicated that lupin seed coats might be beneficial food components, rather than be discarded as 'mill waste'.


Assuntos
Antioxidantes , Hipoglicemiantes , Lupinus , Sementes , Antioxidantes/análise , Sementes/química , Lupinus/química , Hipoglicemiantes/análise , Simulação por Computador , Fibras na Dieta/análise , Valor Nutritivo , Austrália , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Cromatografia Líquida/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Glicosídeo Hidrolases/farmacologia , Espectrometria de Massas/métodos
15.
Foods ; 13(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39335842

RESUMO

Over 21 days of cold storage, the quality and microbial composition of beef steaks in response to different high-CO2 packaging conditions achieved by flushing gas mixtures or embedding gas emitters into the packages were studied. The results revealed that the high levels of CO2, achieved by either the gas flushing or the CO2 emitter pads, effectively controlled the number of aerobic counts. The headspace CO2 increased quickly in response to using the CO2 emitter pads, and the meat samples presented different pH levels and surface color (a* and b*) values compared to the samples packaged with the gas flushing technique. Excessive accumulation of gas in the packages that contained CO2 emitters resulted in package swelling and higher levels of drip loss. The longest overall quality and attractive red color of the meat samples were observed when the packages were initially flushed with the headspace gas mixture containing high levels of oxygen. Overall, using CO2 emitters for meat packaging can be suggested when a topfilm with proper permeability to O2 and CO2 gases is used to regulate the internal CO2/O2 and gas/product ratios.

16.
Foods ; 12(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36981276

RESUMO

The dry heat treatment (DHT) of starch and hydrocolloid mixtures is gaining acknowledgement since hydrocolloids can enhance the efficiency of DHT. However, the DHT of a starch-protein mixture has been less investigated. In this study, the effects of different proteins including sodium caseinate (SC), gelatin, and whey protein isolate (WPI) added to high amylose and waxy corn starches (HACS and WCS, respectively) prepared by the dry mixing and wet method before and after DHT were studied. The DHT of both starches with WPI and SC prepared by the wet method increased the peak viscosity, but no change was observed when gelatin was added. Dry mixing of HACS with the proteins did not affect the peak viscosity before and after DHT. The gelatinization temperatures and enthalpy of both starches showed a slight decrease with the addition of all proteins and reduced further after DHT. The firmness, gumminess, and cohesiveness of the samples decreased upon DHT. The SEM results revealed that the granules were coated by proteins and formed clusters. Particle size analysis showed an increase in the particle size with the addition of proteins, which reduced after DHT. Under the conditions used, the wet method was more successful than dry mixing and the effects of WPI > SC > gelatin in enhancing the physicochemical properties of the tested starches after DHT.

17.
Foods ; 12(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37628092

RESUMO

The combined interactions between ethylcellulose (EC) and natural waxes to structure edible oil are underexplored. To reduce the high EC concentration required to form a functional oleogel, novel oleogels were prepared using a 50% critical concentration of EC (i.e., 4%) with 1-4% beeswax (BW) and carnauba wax (CRW). One percent wax was sufficient for EC to form self-sustaining oleogel. Rheological analysis demonstrated that 4%EC + 4%BW/CRW had comparable oleogel properties to 8%EC. The yield stress and flow point of wax oleogels were enhanced upon EC addition. EC did not influence the thermal behaviour of the wax component of the oleogel, but the crystallinity and plasticity of the combined oleogel increased. The crystal shape of BW oleogel changed upon EC addition from a needle-like to spherulitic shape. Confocal laser scanning microscopy highlighted the uniform distribution of EC polymeric network and wax crystals. EC/wax mixtures have promising oil-structuring abilities that have the potential to use as solid fat substitutes.

18.
Front Nutr ; 10: 1150789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502726

RESUMO

Growing populations, changing dietary preferences and limitations on natural resources have meant that finding an alternative to traditional animal-based protein sources is a priority. Insects have been proposed as a possible solution due to their many benefits including low resource inputs and rich nutritional profile. However, insects are not consumed on a large scale by Australians. Food neophobia (reluctance to try new foods) could be contributing to this delay and as such, this study aimed to explore the role of food neophobia on protein food source habits and willingness to eat insects as food. A total of 601 participants (76.2% female, 23.8% male) completed an online survey which included a questionnaire measuring food neophobia status, participants' self-reported usual protein dietary habits, their previous insect-eating experience, future willingness to eat insects, and potential motivations to include insects in their diet. Results indicated a strong association between food neophobia and participants' dietary choices such as following a vegan or vegetarian diet (p = 0.024). In addition, food neophobia was correlated with a reduced likelihood of previous insect-eating experience (p < 0.001), as well as a decreased willingness to eat insects in the future (p < 0.001). This study provides a greater understanding of the role of food neophobia status and dietary choices in consumers' willingness to eat insects and identifies possible motivating factors that may increase the likelihood of consumers' future insect eating.

19.
Food Chem ; 407: 135082, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493485

RESUMO

Application of non-thermal treatment to proteins prior to enzymatic hydrolysis can facilitate the release of novel bioactive peptides (BPs) with unique biological activities. In this study, lupin protein isolate was pre-treated with ultrasound and hydrolysed using alcalase and flavourzyme to produce alcalase hydrolysate (ACT) and flavourzyme hydrolysate(FCT). These hydrolysates were fractionated into 1, 5, and 10 kDa molecular weight fractions using a membrane ultrafiltration technique. The in vitro angiotensin-converting enzyme (ACE) studies revealed that unfractionated ACT (IC50 = 3.21 mg mL-1) and FCT (IC50 = 3.32 mg mL-1) were more active inhibitors of ACE in comparison to their ultrafiltrated fractions with IC50 values ranging from 6.09 to 7.45 mg mL-1. Molecular docking analysis predicted three unique peptides from ACT (AIPPGIPY, SVPGCT, and QGAGG) and FCT (AIPINNPGKL, SGNQGP, and PPGIP) as potential ACE inhibitors. Thus, unique BPs with ACE inhibitory effects might be generated from ultrasonicated lupin protein.


Assuntos
Anti-Hipertensivos , Hidrolisados de Proteína , Anti-Hipertensivos/química , Simulação de Acoplamento Molecular , Hidrolisados de Proteína/química , Peptídeos/química , Peptidil Dipeptidase A/química , Hidrólise , Subtilisinas/metabolismo
20.
Foods ; 12(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959020

RESUMO

Due to the global rise in food insecurity, micronutrient deficiency, and diet-related health issues, the United Nations (UN) has called for action to eradicate hunger and malnutrition. Grains are the staple food worldwide; hence, improving their nutritional quality can certainly be an appropriate approach to mitigate malnutrition. This review article aims to collect recent information on developing nutrient-dense grains using a sustainable and natural process known as "sprouting or germination" and to discuss novel applications of sprouted grains to tackle malnutrition (specifically undernutrition). This article discusses applicable interventions and strategies to encourage biochemical changes in sprouting grains further to boost their nutritional value and health benefits. It also explains opportunities to use spouted grains at home and in industrial food applications, especially focusing on domestic grains in regions with prevalent malnutrition. The common challenges for producing sprouted grains, their future trends, and research opportunities have been covered. This review article will benefit scientists and researchers in food, nutrition, and agriculture, as well as agrifood businesses and policymakers who aim to develop nutrient-enriched foods to enhance public health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA