Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine (Lond) ; 15(10): 1019-1036, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32264766

RESUMO

Aim: Nano-5-aminolevulic acid (NanoALA)-mediated photodynamic therapy (PDT), an oil-in-water polymeric nanoemulsion of ALA, was evaluated in a murine model of breast cancer. Materials & methods: Analysis of ALA-derived protoporphyrin IX production and acute toxicity test, biocompatibility and treatment efficacy, and long-term effect of NanoALA-PDT on tumor progression were performed. Results: The nanoformulation favored the prodrug uptake by tumor cells in a shorter time (1.5 h). As a result, the adverse effects were negligible and the response rates for primary mammary tumor control were significantly improved. Tumor progression was slower after NanoALA-PDT treatment, providing longer survival. Conclusion: NanoALA is a good proactive drug candidate for PDT against cancer potentially applied as adjuvant/neoadjuvant intervention strategy for breast cancer.


Assuntos
Ácido Aminolevulínico/uso terapêutico , Neoplasias da Mama , Fotoquimioterapia , Animais , Neoplasias da Mama/tratamento farmacológico , Morte Celular , Linhagem Celular Tumoral , Portadores de Fármacos , Humanos , Camundongos , Nanomedicina , Fármacos Fotossensibilizantes/uso terapêutico
2.
J Biomed Nanotechnol ; 16(2): 179-192, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32252879

RESUMO

Nanobiotechnology strategies for cancer treatments are currently being tested with increasing interest, except in elderly groups. It is well established that breast cancer incidence increases with age and that traditional therapies usually generate severe adverse effects, especially for elderly groups. To investigate if the benefits of nanotechnology could be extended to treating cancer in this group, citrate-coated maghemite nanoparticles (NpCit) were used for magnetohyperthermia (MHT) in combination with the administration of PLGA-Selol nanocapsule (NcSel), a formulation with antioxidant and antitumor activity. The combined therapies significantly inhibited breast Ehrlich tumor growth and prevented metastases to the lymph nodes, liver and lungs until 45 days after tumor induction, a better result than the group undergoing conventional drug treatment. The levels of TNF-α, associated with poor prognosis in Ehrlich tumor, were also normalized. Therefore, the results evidenced the potential use of these therapies for future clinical trials in elderly breast cancer patients.


Assuntos
Adenocarcinoma , Envelhecimento , Animais , Linhagem Celular Tumoral , Glicóis , Humanos , Camundongos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Compostos de Selênio
3.
Int J Nanomedicine ; 14: 3375-3388, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31123402

RESUMO

BACKGROUND: Magnetic nanoparticles (MNPs) have been successfully tested for several purposes in medical applications. However, knowledge concerning the effects of nanostructures on elderly organisms is remarkably scarce. PURPOSE: To fill part of this gap, this work aimed to investigate biocompatibility and bio-distribution aspects of magnetic nanoparticles coated with citrate (NpCit) in both elderly and young healthy mice. METHODS: NpCit (2.4 mg iron) was administered intraperitoneally, and its toxicity was evaluated for 28 days through clinical, biochemical, hematological, and histopathological examinations. In addition, its biodistribution was evaluated by spectrometric (inductively coupled plasma optical emission spectrometry) and histological methods. RESULTS: NpCit presented age-dependent effects, inducing very slight and temporary biochemical and hematological changes in young animals. These changes were even weaker than the effects of the aging process, especially those related to the hematological data, tumor necrosis factor alpha, and nitric oxide levels. On the other hand, NpCit showed a distinct set of results in the elderly group, sometimes reinforcing (decrease of lymphocytes and increase of monocytes) and sometimes opposing (erythrocyte parameters and cytokine levels) the aging changes. Leukocyte changes were still observed on the 28th day after treatment in the elderly group. Slight evidence of a decrease in liver and immune functions was detected in elderly mice treated or not treated with NpCit. It was noted that tissue damage or clinical changes related to aging or to the NpCit treatment were not observed. As detected for aging, the pattern of iron biodistribution was significantly different after NpCit administration: extra iron was detected until the 28th day, but in different organs of elderly (liver and kidneys) and young (spleen, liver, and lungs) mice. CONCLUSION: Taken together, the data show NpCit to be a stable and reasonably biocompatible sample, especially for young mice, and thus appropriate for biomedical applications. The data showed important differences after NpCit treatment related to the animals' age, and this emphasizes the need for further studies in older animals to appropriately extend the benefits of nanotechnology to the elderly population.


Assuntos
Envelhecimento/fisiologia , Ácido Cítrico/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Nanopartículas de Magnetita/química , Animais , Feminino , Ferro/química , Pulmão/efeitos dos fármacos , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Óxido Nítrico/sangue , Especificidade de Órgãos/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA