Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Microbiol ; 122: 104536, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839216

RESUMO

The aim of this study was to develop a novel and healthier fermented meat product by replacing pork fat with avocado pulp (AVP) during salami production. Experimental salamis were produced under laboratory conditions by substituting pork fat with AVP partially (10-AVP) and totally (20-AVP), while control salamis (CTR) remained AVP-free. The microbial composition of control and experimental salamis was assessed using a combined culture-dependent and -independent approach. Over a 20-days ripening period, lactic acid bacteria, coagulase-negative staphylococci, and yeasts dominated the microbial community, with approximate levels of 9.0, 7.0 and 6.0 log CFU/g, respectively. Illumina technology identified 26 taxonomic groups, with leuconostocs being the predominant group across all trials [constituting 31.26-59.12 % of relative abundance (RA)]. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed changes in fatty acid composition and volatile organic compounds due to the substitution of pork fat with AVP. Specifically, monounsaturated fatty acids and terpene compounds increased, while saturated fatty acids and lipid oxidation products decreased. Although AVP influenced the sensory characteristics of the salamis, the highest overall satisfaction ratings were observed for the 10-AVP salamis. Consequently, substituting pork fat with AVP emerges as a viable strategy for producing healthier salamis and diversifying the meat product portfolio.


Assuntos
Fermentação , Produtos da Carne , Persea , Persea/microbiologia , Persea/química , Animais , Suínos , Produtos da Carne/microbiologia , Produtos da Carne/análise , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Humanos , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/genética , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Frutas/microbiologia , Frutas/química , Microbiologia de Alimentos , Paladar , Lactobacillales/metabolismo , Lactobacillales/classificação , Lactobacillales/crescimento & desenvolvimento
2.
Foods ; 13(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39123593

RESUMO

In response to the global challenge of food wastage and high perishability of blackberries, this study evaluated the use of ultrasound-assisted hot air drying (US-HAD) to convert downgraded blackberries into powders, comparing it with traditional hot air drying (HAD). US-HAD reduced the drying time and achieved a final moisture content of 12%. Physicochemical analyses (colourimetry, total soluble solids, titratable acidity, and total phenolic content) were conducted on fresh fruit, powders, and fortified cookies. US-HAD cookies exhibited promising antioxidant activity, with ABTS values ranging from 8.049 to 8.536 mmol TEAC/100 g and DPPH values from 8.792 to 9.232 mmol TEAC/100 g, significantly higher than control cookies. The TPC was 13.033 mgGAE/g in HAD cookies and 13.882 mgGAE/g in US-HAD cookies. UHPLC-ESI-MS analysis showed an increase in phenolic compounds content in fortified cookies compared to the control. Sensory analysis highlighted a superior blackberry flavour and overall acceptability in US-HAD cookies, with statistical analysis confirming their superior nutritional and sensory qualities. Integrating US-HAD blackberry powder into cookies helps reduce food waste and enhances the nutritional profiles of baked goods, offering functional foods with health benefits. This work provides a scientific basis for developing enriched functional cookies, offering a healthy and sustainable alternative for utilising damaged fruits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA