Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(15): e23873, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39105468

RESUMO

For patients with lower limb amputations, prostheses are immensely helpful for mobility and the ability to perform job-related or recreational activities. However, the skin covering the amputation stump is typically transposed from adjacent areas of the leg and lacks the weight-bearing capacity that is only found in the specialized skin covering the palms and soles (a.k.a. volar skin). As a result, the skin tissue in direct contact with the prosthesis frequently breaks down, leading to the development of painful sores and other complications that limit, and often preclude, the use of prostheses. Transplanting volar skin onto amputation stumps could be a solution to these problems, but traditional skin transplantation techniques cause substantial morbidity at the donor site, such as pain and scarring, which are especially problematic for volar skin given the critical functional importance of the volar skin areas. We previously developed the technology to collect and engraft full-thickness skin tissue while avoiding long-term donor site morbidity, by harvesting the skin in the form of small (~0.5 mm diameter) cores that we termed "micro skin tissue columns" (MSTCs), so that each donor wound is small enough to heal quickly and without clinically appreciable scarring or other long-term abnormalities. The goal of this study was to establish whether a similar approach could be used to confer the structural and molecular characteristics of volar skin ectopically to other skin areas. In a human-to-mouse xenograft model, we show the long-term persistence of various human plantar MSTC-derived cell types in the murine recipient. Then in an autologous porcine model, we harvested MSTCs from the bottom of the foot and transplanted them onto excision wounds on the animals' trunks. The healing processes at both the donor and graft sites were monitored over 8 weeks, and tissue samples were taken to verify volar-specific characteristics by histology and immunohistochemistry. The volar donor sites were well-tolerated, healed rapidly, and showed no signs of scarring or any other long-term defects. The graft sites were able to maintain volar-specific histologic features and expression of characteristics protein markers, up to the 8-week duration of this study. These results suggest that MSTC grafting could be a practical approach to obtain autologous donor volar skin tissue, confer volar skin characteristics ectopically to nonvolar skin areas, improve the load-bearing capacity of amputation stump skin, and ultimately enhance mobility and quality-of-life for lower limb amputees.


Assuntos
Transplante de Pele , Pele , Suporte de Carga , Animais , Transplante de Pele/métodos , Camundongos , Pele/metabolismo , Humanos , Feminino , Masculino , Suínos
2.
Lasers Surg Med ; 55(1): 116-125, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598082

RESUMO

OBJECTIVES: Cryolipolysis uses tissue cooling to solidify lipids, preferentially damaging lipid-rich cells. Topical cooling is popular for the reduction of local subcutaneous fat. Injection of biocompatible ice-slurry is a recently introduced alternative. We developed and verified a quantitative model that simulates the heat exchange and phase changes involved, offering insights into ice-slurry injection for treating subcutaneous fat. METHODS: Finite element method was used to model the spatial and temporal progression of heat transfer between adipose tissue and injected ice-slurry, estimating dose-response relationships between properties of the slurry and size of tissue affected by cryolipolysis. Phase changes of both slurry and adipose tissue lipids were considered. An in vivo swine model was used to validate the numerical solutions. Oils with different lipid compositions were exposed to ice-slurry in vitro to evaluate the effects of lipid freezing temperature. Microscopy and nuclear magnetic resonance (NMR) were performed to detect lipid phase changes. RESULTS: A ball of granular ice was deposited at the injection site in subcutaneous fat. Total injected ice content determines both the effective cooling region of tissue, and the duration of tissue cooling. Water's high latent heat of fusion enables tissue cooling long after slurry injection. Slurry temperature affects the rate of tissue cooling. In swine, when 30 ml slurry injection at -3.5°C was compared to 15 ml slurry injection at -4.8°C (both with the same total ice content), the latter led to almost twice faster tissue cooling. NMR showed a large decrease in diffusion upon lipid crystallization; saturated lipids with higher freezing temperatures were more susceptible to solidification after ice-slurry injection. CONCLUSIONS: Total injected ice content determines both the volume of tissue treated by cryolipolysis and the cooling duration after slurry injection, while slurry temperature affects the cooling rate. Lipid saturation, which varies with diet and anatomic location, also has an important influence.


Assuntos
Temperatura Corporal , Gelo , Suínos , Animais , Temperatura , Tecido Adiposo , Temperatura Alta
3.
Lasers Surg Med ; 55(7): 674-679, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37464943

RESUMO

OBJECTIVES: Excess pericardial adipose tissue (PAT) is associated with a higher risk of cardiovascular diseases. Currently, available methods for reducing PAT volume include weight loss through diet and exercise, weight loss with medications, and bariatric surgery. However, these methods are all limited by low patient compliance to maintain the results. We have developed an injectable ice slurry that could selectively target and reduce subcutaneous adipose tissue volume. The aim of this study was to investigate the feasibility and safety of using injectable slurry to selectively reduce PAT volume in a preclinical large animal model. METHODS: PAT in Yucatan swine was injected with slurry or room temperature control solution. All animals were imaged with baseline chest computed tomography (CT) before slurry injection and at 2 months after injection to quantify PAT volume. Specimens from injected and noninjected PAT were harvested for histology. RESULTS: Slurry treatment of PAT was well tolerated in all animals. Slurry-induced selective cryolipolysis in treated PAT. CT imaging showed decrease in PAT volume in treated area at 8 weeks posttreatment compared to baseline, that was significantly different from control solution treated group (median [range]: -29.66 [-35.07 to -27.92]% vs. -1.50 [-11.69 to 8.69]% in control animals respectively, p < 0.05). CONCLUSIONS: This study demonstrated that slurry injection into PAT is feasible in a large animal model. Slurry injection was safe and effective in inducing selective cryolipolysis in PAT and reducing PAT volume. Slurry reduction of PAT could potentially serve as a novel treatment for cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Gelo , Suínos , Animais , Tecido Adiposo/patologia , Gordura Subcutânea , Redução de Peso
4.
Lasers Surg Med ; 54(10): 1288-1297, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35593006

RESUMO

INTRODUCTION: The ability of ablative fractional lasers (AFL) to enhance topical drug uptake is well established. After AFL delivery, however, drug clearance by local vasculature is poorly understood. Modifications in vascular clearance may enhance AFL-assisted drug concentrations and prolong drug dwell time in the skin. Aiming to assess the role and modifiability of vascular clearance after AFL-assisted delivery, this study examined the impact of vasoregulative interventions on AFL-assisted 5-fluorouracil (5-FU) concentrations in in vivo skin. METHODS: 5-FU uptake was assessed in intact and AFL-exposed skin in a live pig model. After fractional CO2 laser exposure (15 mJ/microbeam, 5% density), vasoregulative intervention using topical brimonidine cream, epinephrine solution, or pulsed dye laser (PDL) was performed in designated treatment areas, followed by a single 5% 5-FU cream application. At 0, 1, 4, 48, and 72 h, 5-FU concentrations were measured in 500 and 1500 µm skin layers by mass spectrometry (n = 6). A supplemental assessment of blood flow following AFL ± vasoregulation was performed using optical coherence tomography (OCT) in a human volunteer. RESULTS: Compared to intact skin, AFL facilitated a prompt peak in 5-FU delivery that remained elevated up to 4 hours (1500 µm: 1.5 vs. 31.8 ng/ml [1 hour, p = 0.002]; 5.3 vs. 14.5 ng/ml [4 hours, p = 0.039]). However, AFL's impact was transient, with 5-FU concentrations comparable to intact skin at later time points. Overall, vasoregulative intervention with brimonidine or PDL led to significantly higher peak 5-FU concentrations, prolonging the drug's dwell time in the skin versus AFL delivery alone. As such, brimonidine and PDL led to twofold higher 5-FU concentrations than AFL alone in both skin layers by 1 hour (e.g., 500 µm: 107 ng/ml [brimonidine]; 96.9 ng/ml [PDL], 46.6 ng/ml [AFL alone], p ≤ 0.024), and remained significantly elevated at 4 hours (p ≤ 0.024). A similar pattern was observed for epinephrine, although trends remained nonsignificant (p ≥ 0.09). Prolonged 5-FU delivery was provided by PDL, resulting in sustained drug deposition compared to AFL alone at both 48 and 72 hours in the superficial skin layer (p ≤ 0.024). Supporting drug delivery findings, OCT revealed that increases in local blood flow after AFL were mitigated in test areas also exposed to PDL, brimonidine, or epinephrine, with PDL providing the greatest, sustained reduction in flow over 48 hours. CONCLUSION: Vasoregulative intervention in conjunction with AFL-assisted delivery enhances and prolongs 5-FU deposition in in vivo skin.


Assuntos
Lasers de Gás , Pele , Suínos , Humanos , Animais , Fluoruracila , Tartarato de Brimonidina/uso terapêutico , Epinefrina
5.
Lasers Surg Med ; 54(3): 426-432, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34658052

RESUMO

BACKGROUND AND OBJECTIVES: Carbon monoxide (CO) poisoning is responsible for nearly 50,000 emergency department visits and 1200 deaths per year. Compared to oxygen, CO has a 250-fold higher affinity for hemoglobin (Hb), resulting in the displacement of oxygen from Hb and impaired oxygen delivery to tissues. Optimal treatment of CO-poisoned patients involves the administration of hyperbaric 100% oxygen to remove CO from Hb and to restore oxygen delivery. However, hyperbaric chambers are not widely available and this treatment requires transporting a CO-poisoned patient to a specialized center, which can result in delayed treatment. Visible light is known to dissociate CO from carboxyhemoglobin (COHb). In a previous study, we showed that a system composed of six photo-extracorporeal membrane oxygenation (ECMO) devices efficiently removes CO from a large animal with CO poisoning. In this study, we tested the hypothesis that the application of hyperbaric oxygen to the photo-ECMO device would further increase the rate of CO elimination. STUDY DESIGN/MATERIAL AND METHODS: We developed a hyperbaric photo-ECMO device and assessed the ability of the device to remove CO from CO-poisoned human blood. We combined four devices into a "hyperbaric photo-ECMO system" and compared its ability to remove CO to our previously described photo-ECMO system, which was composed of six devices ventilated with normobaric oxygen. RESULTS: Under normobaric conditions, an increase in oxygen concentration from 21% to 100% significantly increased CO elimination from CO-poisoned blood after a single pass through the device. Increased oxygen pressure within the photo-ECMO device was associated with higher exiting blood PO2 levels and increased CO elimination. The system of four hyperbaric photo-ECMO devices removed CO from 1 L of CO-poisoned blood as quickly as the original, normobaric photo-ECMO system composed of six devices. CONCLUSION: This study demonstrates the feasibility and efficacy of using a hyperbaric photo-ECMO system to increase the rate of CO elimination from CO-poisoned blood. This technology could provide a simple portable emergency device and facilitate immediate treatment of CO-poisoned patients at or near the site of injury.


Assuntos
Intoxicação por Monóxido de Carbono , Monóxido de Carbono , Animais , Intoxicação por Monóxido de Carbono/complicações , Intoxicação por Monóxido de Carbono/terapia , Carboxihemoglobina , Hemoglobinas , Humanos , Oxigênio , Fototerapia/métodos
6.
Lasers Surg Med ; 54(2): 256-267, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34350599

RESUMO

BACKGROUND AND OBJECTIVES: Carbon monoxide (CO) inhalation is the leading cause of poison-related deaths in the United States. CO binds to hemoglobin (Hb), displaces oxygen, and reduces oxygen delivery to tissues. The optimal treatment for CO poisoning in patients with normal lung function is the administration of hyperbaric oxygen (HBO). However, hyperbaric chambers are only available in medical centers with specialized equipment, resulting in delayed therapy. Visible light dissociates CO from Hb with minimal effect on oxygen binding. In a previous study, we combined a membrane oxygenator with phototherapy at 623 nm to produce a "mini" photo-ECMO (extracorporeal membrane oxygenation) device, which improved CO elimination and survival in CO-poisoned rats. The objective of this study was to develop a larger photo-ECMO device ("maxi" photo-ECMO) and to test its ability to remove CO from a porcine model of CO poisoning. STUDY DESIGN/MATERIALS AND METHODS: The "maxi" photo-ECMO device and the photo-ECMO system (six maxi photo-ECMO devices assembled in parallel), were tested in an in vitro circuit of CO poisoning. To assess the ability of the photo-ECMO device and the photo-ECMO system to remove CO from CO-poisoned blood in vitro, the half-life of COHb (COHb-t1/2 ), as well as the percent COHb reduction in a single blood pass through the device, were assessed. In the in vivo studies, we assessed the COHb-t1/2 in a CO-poisoned pig under three conditions: (1) While the pig breathed 100% oxygen through the endotracheal tube; (2) while the pig was connected to the photo-ECMO system with no light exposure; and (3) while the pig was connected to the photo-ECMO system, which was exposed to red light. RESULTS: The photo-ECMO device was able to fully oxygenate the blood after a single pass through the device. Compared to ventilation with 100% oxygen alone, illumination with red light together with 100% oxygen was twice as efficient in removing CO from blood. Changes in gas flow rates did not alter CO elimination in one pass through the device. Increases in irradiance up to 214 mW/cm2 were associated with an increased rate of CO elimination. The photo-ECMO device was effective over a range of blood flow rates and with higher blood flow rates, more CO was eliminated. A photo-ECMO system composed of six photo-ECMO devices removed CO faster from CO-poisoned blood than a single photo-ECMO device. In a CO-poisoned pig, the photo-ECMO system increased the rate of CO elimination without significantly increasing the animal's body temperature or causing hemodynamic instability. CONCLUSION: In this study, we developed a photo-ECMO system and demonstrated its ability to remove CO from CO-poisoned 45-kg pigs. Technical modifications of the photo-ECMO system, including the development of a compact, portable device, will permit treatment of patients with CO poisoning at the scene of their poisoning, during transit to a local emergency room, and in hospitals that lack HBO facilities.


Assuntos
Intoxicação por Monóxido de Carbono , Venenos , Animais , Monóxido de Carbono , Intoxicação por Monóxido de Carbono/terapia , Carboxihemoglobina/metabolismo , Humanos , Fototerapia/métodos , Ratos , Suínos
7.
Appl Opt ; 59(25): 7585-7595, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902458

RESUMO

We present evidence-based design principles for three different UV-C based decontamination systems for N95 filtering facepiece respirators (FFRs) within the context of the SARS-CoV-2 outbreak of 2019-2020. The approaches used here were created with consideration for the needs of low- and middle-income countries (LMICs) and other under-resourced facilities. As such, a particular emphasis is placed on providing cost-effective solutions that can be implemented in short order using generally available components and subsystems. We discuss three optical designs for decontamination chambers, describe experiments verifying design parameters, validate the efficacy of the decontamination for two commonly used N95 FFRs (3M, #1860 and Gerson #1730), and run mechanical and filtration tests that support FFR reuse for at least five decontamination cycles.


Assuntos
Filtros de Ar , Descontaminação/instrumentação , Desenho de Equipamento/métodos , Máscaras , Raios Ultravioleta , Filtros de Ar/microbiologia , Filtros de Ar/virologia , Reutilização de Equipamento , Umidade , Ozônio/síntese química , Ozônio/toxicidade , Temperatura , Raios Ultravioleta/efeitos adversos
8.
Lasers Surg Med ; 50(1): 64-69, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29058788

RESUMO

BACKGROUND AND OBJECTIVE: Ablative fractional laser treatment uses thousands of very small laser beam wounds to damage a fraction of the skin, which stimulates tissue remodeling. Each open micro-wound heals without scarring, but the amount of skin tightening achieved is limited. This animal study was performed to test the hypothesis that immediate temporary closure of fractional laser wounds could increase skin tightening after fractional ablative laser treatment. MATERIALS AND METHODS: Four adult swine were used for the study; 98 square test sites (3 × 3 cm) were tattooed on the abdomen and flanks of each pig. An ablative fractional Erbium:YAG laser (Sciton Profile, Sciton Inc, Palo Alto, CA) was used to treat the test areas. A laser micro-spot fluence of 375 J/cm2 was delivered in 150-250 microseconds pulses, resulting in an array of ablation channels extending 1.5 mm deep into the skin, with a spot size of 250 µm, with 10% treatment density. Immediately following laser exposure the resulting holes were closed using a stretched elastic adhesive dressing, which, when applied, recoiled and compressed the diameter of the ablation holes. The compressive dressings were removed after 7 days. This procedure was compared to removing the same amount of skin (10%) mechanically by specially designed 19 gauge coring needles, as well as to the same laser and coring methods without compression closure. Area and shape of test sites were measured by digital photography before and 28 days after treatment. Data analysis included compensation for animal growth, as measured by increase in the area of the untreated control sites. RESULTS: All treated and control sites healed within a week, without scarring evident at 28 days. Laser treatment combined with compressive wound closure caused significant shrinkage at 28 days compared with untreated control sites. The treated skin area was reduced by 11.5% (P = 0.0001). Needle coring with wound closure produced similar, significant shrinkage (8%, P < 0.0021), whereas laser and needle coring treatment without closure did not result in significant area reduction (P = 0.1289) compared with untreated control sites. CONCLUSION: Significant skin tightening can be achieved by immediate temporary non-invasive wound closure after short pulse Er:YAG fractional ablative laser treatment, as well as after mechanically removing skin with a coring needle. This approach may improve skin tightening after ablative laser treatments. Further clinical studies are necessary to confirm successful application in humans. Lasers Surg. Med. 50:64-69, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Terapia a Laser/métodos , Lasers de Estado Sólido/uso terapêutico , Envelhecimento da Pele/efeitos da radiação , Cicatrização/efeitos da radiação , Animais , Feminino , Envelhecimento da Pele/patologia , Suínos
9.
Am J Respir Crit Care Med ; 192(10): 1191-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26214119

RESUMO

RATIONALE: Carbon monoxide (CO) exposure is a leading cause of poison-related mortality. CO binds to Hb, forming carboxyhemoglobin (COHb), and produces tissue damage. Treatment of CO poisoning requires rapid removal of CO and restoration of oxygen delivery. Visible light is known to effectively dissociate CO from Hb, with a single photon dissociating one CO molecule. OBJECTIVES: To determine whether illumination of the lungs of CO-poisoned mice causes dissociation of COHb from blood transiting the lungs, releasing CO into alveoli and thereby enhancing the rate of CO elimination. METHODS: We developed a model of CO poisoning in anesthetized and mechanically ventilated mice to assess the effects of direct lung illumination (phototherapy) on the CO elimination rate. Light at wavelengths between 532 and 690 nm was tested. The effect of lung phototherapy administered during CO poisoning was also studied. To avoid a thoracotomy, we assessed the effect of lung phototherapy delivered to murine lungs via an optical fiber placed in the esophagus. MEASUREMENTS AND MAIN RESULTS: In CO-poisoned mice, phototherapy of exposed lungs at 532, 570, 592, and 628 nm dissociated CO from Hb and doubled the CO elimination rate. Phototherapy administered during severe CO poisoning limited the blood COHb increase and improved the survival rate. Noninvasive transesophageal phototherapy delivered to murine lungs via an optical fiber increased the rate of CO elimination while avoiding a thoracotomy. CONCLUSIONS: Future development and scaling up of lung phototherapy for patients with CO exposure may provide a significant advance for treating and preventing CO poisoning.


Assuntos
Intoxicação por Monóxido de Carbono/terapia , Carboxihemoglobina/metabolismo , Fototerapia/métodos , Animais , Intoxicação por Monóxido de Carbono/sangue , Carboxihemoglobina/análise , Modelos Animais de Doenças , Taxa de Depuração Metabólica/fisiologia , Camundongos
10.
Lasers Surg Med ; 48(2): 116-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26280816

RESUMO

BACKGROUND AND OBJECTIVE: Ablative fractional laser (AFXL) is rapidly evolving as one of the foremost techniques for cutaneous drug delivery. While AFXL has effectively improved topical drug-induced clearance rates of actinic keratosis, treatment of basal cell carcinomas (BCCs) has been challenging, potentially due to insufficient drug uptake in deeper skin layers. This study sought to investigate a standardized method to actively fill laser-generated channels by altering pressure, vacuum, and pressure (PVP), enquiring its effect on (i) relative filling of individual laser channels; (ii) cutaneous deposition and delivery kinetics; (iii) biodistribution and diffusion pattern, estimated by mathematical simulation. METHODS: Franz diffusion chambers (FCs) were used to evaluate the PVP-technique, comparing passive (AFXL) and active (AFXL + PVP) channel filling. A fractional CO2-laser generated superficial (225 µm;17.5 mJ/channel) and deep (1200 µm; 130.5 mJ/channel) channels, and PVP was delivered as a 3-minutes cycle of 1 minute pressure (+1.0 atm), 1 minute vacuum (-1.0 atm), and 1 minute pressure (+1.0 atm). Filling of laser channels was visualized with a colored biomarker liquid (n = 12 FCs, n = 588 channels). Nuclear magnetic resonance quantified intracutaneous deposition of topically applied polyethylene glycol (PEG400) over time (10 minutes, 1 hour, and 4 hours), investigated with (n = 36 FCs) and without (n = 30 FCs) PVP-filling. Two-dimensional mathematical simulation was used to simulate intradermal biodistribution and diffusion at a depth of 1,000 µm. RESULTS: Active filling with application of PVP increased the number of filled laser channels. At a depth of 1,000 µm, filling increased from 44% (AFXL) to 94% with one PVP cycle (AFXL + PVP; P < 0.01). Active filling greatly enhanced intracutaneous deposition of PEG400, resulting in a rapid delivery six-folding uptake at 10 minutes (AFXL 54 µg/ml vs. AFXL + PVP 303 µg/ml, P < 0.01). AFXL alone generated an inhomogeneous uptake of PEG400, which greatly improved with active filling, resulting in a uniform uptake within the entire tissue. CONCLUSION: Active filling with PVP secures filling of laser channels and induces a deeper, greater, more rapid delivery than conventional AFXL. This delivery technique has promise to improve treatment efficacy for medical treatments of dermally invasive lesions, such as BCCs.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lasers de Gás , Polietilenoglicóis/administração & dosagem , Pele/química , Administração Cutânea , Animais , Fenômenos Biomecânicos , Difusão , Sistemas de Liberação de Medicamentos/instrumentação , Feminino , Cinética , Polietilenoglicóis/farmacocinética , Pressão , Suínos , Vácuo
11.
Lasers Surg Med ; 48(3): 264-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26627306

RESUMO

BACKGROUND AND OBJECTIVE: Skin changes are among the most visible signs of aging. Fractional ablative lasers improve skin quality by making small skin wounds that heal rapidly without scarring. While they improve skin texture and discoloration, there is minimal effect on skin laxity. This study was performed to assess skin shrinkage performed by removing multiple small full-thickness skin columns with coring needles combined with wound closure. MATERIALS AND METHODS: In 5 swine 116 squares (3 cm(2) ) were demarcated for treatment and control sites. In treatment sites 10% of the skin was removed by full-thickness skin coring needles (19 gauge) and afterwards closed and compressed with an elastic adhesive dressing. This procedure was compared to puncturing the skin with standard hypodermic needles (without tissue removal) and subsequent closure with compressive dressing. Area and shape of sites were measured before and 28 days after treatment. RESULTS: Test and control sites healed within a week without scarring. Coring with wound closure caused significant shrinkage after 28 days. The treated skin area was reduced by 9% (P < 0.0001) and the direction of shrinkage was influenced by the direction of wound closure. Coring without wound closure and puncturing the skin without tissue removal produced an insignificant 3% decrease in area. CONCLUSION: Significant minimally invasive skin tightening in a preferred direction can be achieved by removing skin with coring needles followed by wound closure. The direction of shrinkage is influenced by the direction of micro-hole closure, irrespective of the skin tension lines. This approach may allow reshaping the skin in a desired direction without scarring.


Assuntos
Ritidoplastia/métodos , Envelhecimento da Pele , Animais , Feminino , Modelos Animais , Agulhas , Rejuvenescimento , Ritidoplastia/instrumentação , Suínos , Técnicas de Fechamento de Ferimentos , Cicatrização
12.
Dermatol Surg ; 41(7): 803-11, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26079592

RESUMO

BACKGROUND: Neither photodynamic therapy (PDT) nor sterile water has not been well studied for the treatment of adipose tissue. OBJECTIVE: This investigation studied 2 different modalities, verteporfin PDT and sterile water, on adipose tissue compared with control. MATERIALS AND METHODS: Four light-skinned pigs were used. Test sites received verteporfin PDT or sterile water injection. Control sites received injection of verteporfin without PDT, normal saline injection, no intervention, exposure to laser only, or insertion of a needle or cannula only. Sites were evaluated clinically, by ultrasound, and with histology 4 to 6 weeks after treatment. RESULTS: There was a decrease in adipose tissue by ultrasound after verteporfin PDT (15%, p < .001) and sterile water (2%, p = .23). Verteporfin without PDT showed a decrease in adipose tissue (17%, p = .21). All other control sites showed an increase in adipose tissue. Histologically, verteporfin PDT and sterile water showed moderate damage (median Grade 2, p < .001) 4 to 6 weeks after intervention. CONCLUSION: Verteporfin decreased adipose tissue after treatment. Sterile water injection had a statistically significant effect on adipose tissue histologically but did not substantially decrease the adipose tissue by ultrasound 4 to 6 weeks after intervention. Longer follow-up may be needed.


Assuntos
Tecido Adiposo/efeitos da radiação , Fotoquimioterapia , Água , Tecido Adiposo/diagnóstico por imagem , Animais , Porfirinas/farmacologia , Suínos , Ultrassonografia , Verteporfina
13.
Lasers Surg Med ; 46(6): 462-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24842112

RESUMO

BACKGROUND AND OBJECTIVES: 5-Aminolevulinic acid (ALA) and methyl aminolevulinate (MAL) are porphyrin precursors used topically for photodynamic therapy (PDT). Previous studies have established that ablative fractional laser (AFXL) increases topical drug uptake. We evaluated kinetics and biodistribution of ALA- and MAL-induced porphyrins on intact and disrupted skin due to AFXL. MATERIALS AND METHODS: Two Yorkshire swine were exposed to CO2 AFXL (10.6 µm, 1,850 µm ablation depth) and subsequent topical application of ALA and MAL cream formulations (20%, weight/weight). Porphyrin fluorescence was quantified by digital fluorescence photography (30, 90, and 180 minutes) and fluorescence microscopy at specific skin depths (180 minutes). RESULTS: Porphyrins gradually formed over time, differently on intact and AFXL-disrupted skin. On intact skin (no AFXL), fluorescence photography showed that MAL initially induced higher fluorescence than ALA (t = 30 minutes MAL 21.1 vs. ALA 7.7 au, t = 90 minutes MAL 39.0 vs. ALA 26.6 (P < 0.009)) but reached similar intensities for long-term applications (t = 180 minutes MAL 56.6 vs. ALA 52 au, P = ns). AFXL considerably enhanced porphyrin fluorescence from both photosensitizers (P < 0.05). On AFXL-exposed skin, MAL expressed higher fluorescence than ALA for short-term application (t = 30 minutes, AFXL-MAL 26.4 vs. AFXL-ALA 14.1 au, P < 0.001), whereas ALA over time overcame MAL and induced the highest fluorescence intensities obtained (t = 180 minutes, AFXL-MAL 98.6 vs. AFXL-ALA 112.0 au, P < 0.001). In deep skin layers, fluorescence microscopy showed higher fluorescence in hair follicle epithelium for ALA than MAL (t = 180 minutes, 1.8 mm, AFXL-MAL 35.3 vs. AFXL-ALA 46.7 au, P < 0.05). CONCLUSIONS: AFXL changes kinetics and biodistribution of ALA and MAL. It appears that AFXL-ALA favors targeting deep structures.


Assuntos
Ácido Aminolevulínico/análogos & derivados , Ácido Aminolevulínico/farmacocinética , Lasers de Gás , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Administração Tópica , Animais , Microscopia de Fluorescência , Fotografação , Porfirinas/metabolismo , Absorção Cutânea , Suínos , Distribuição Tecidual
14.
J Funct Biomater ; 15(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38921522

RESUMO

OBJECTIVES: This study investigated a novel strategy for improving regenerative cartilage outcomes. It combines fractional laser treatment with the implantation of neocartilage generated from autologous dynamic Self-Regenerating Cartilage (dSRC). METHODS: dSRC was generated in vitro from harvested autologous swine chondrocytes. Culture was performed for 2, 4, 8, 10, and 12 weeks to study matrix maturation. Matrix formation and implant integration were also studied in vitro in swine cartilage discs using dSRC or cultured chondrocytes injected into CO2 laser-ablated or mechanically punched holes. Cartilage discs were cultured for up to 8 weeks, harvested, and evaluated histologically and immunohistochemically. RESULTS: The dSRC matrix was injectable by week 2, and matrices grew larger and more solid with time, generating a contiguous neocartilage matrix by week 8. Hypercellular density in dSRC at week 2 decreased over time and approached that of native cartilage by week 8. All dSRC groups exhibited high glycosaminoglycan (GAG) production, and immunohistochemical staining confirmed that the matrix was typical of normal hyaline cartilage, being rich in collagen type II. After 8 weeks in cartilage lesions in vitro, dSRC constructs generated a contiguous cartilage matrix, while isolated cultured chondrocytes exhibited only a sparse pericellular matrix. dSRC-treated lesions exhibited high GAG production compared to those treated with isolated chondrocytes. CONCLUSIONS: Isolated dSRC exhibits hyaline cartilage formation, matures over time, and generates contiguous articular cartilage matrix in fractional laser-created microenvironments in vitro, being well integrated with native cartilage.

15.
J Photochem Photobiol B ; 244: 112720, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37186990

RESUMO

Cutaneous bacterial wound infections typically involve gram-positive cocci such as Staphylococcus aureus (SA) and usually become biofilm infections. Bacteria in biofilms may be 100-1000-fold more resistant to an antibiotic than the clinical laboratory minimal inhibitory concentration (MIC) for that antibiotic, contributing to antimicrobial resistance (AMR). AMR is a growing global threat to humanity. One pathogen-antibiotic resistant combination, methicillin-resistant SA (MRSA) caused more deaths globally than any other such combination in a recent worldwide statistical review. Many wound infections are accessible to light. Antimicrobial phototherapy, and particularly antimicrobial blue light therapy (aBL) is an innovative non-antibiotic approach often overlooked as a possible alternative or adjunctive therapy to reduce antibiotic use. We therefore focused on aBL treatment of biofilm infections, especially MRSA, focusing on in vitro and ex vivo porcine skin models of bacterial biofilm infections. Since aBL is microbicidal through the generation of reactive oxygen species (ROS), we hypothesized that menadione (Vitamin K3), a multifunctional ROS generator, might enhance aBL. Our studies suggest that menadione can synergize with aBL to increase both ROS and microbicidal effects, acting as a photosensitizer as well as an ROS recycler in the treatment of biofilm infections. Vitamin K3/menadione has been given orally and intravenously worldwide to thousands of patients. We conclude that menadione/Vitamin K3 can be used as an adjunct to antimicrobial blue light therapy, increasing the effectiveness of this modality in the treatment of biofilm infections, thereby presenting a potential alternative to antibiotic therapy, to which biofilm infections are so resistant.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Infecção dos Ferimentos , Humanos , Vitamina K 3/farmacologia , Vitamina K 3/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Biofilmes , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
16.
Lasers Surg Med ; 44(2): 152-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22241659

RESUMO

BACKGROUND AND OBJECTIVE: Oxyhemoglobin (HbO(2)) has been regarded as the primary target chromophore for selective photothermolysis of vascular malformations. In theory, venous lesions might be better treated with wavelengths preferentially absorbed by deoxyhemoglobin (Hb). STUDY DESIGN/MATERIALS AND METHODS: Wavelength-dependent fluence thresholds for photocoagulation of whole human blood were determined in glass capillary samples with measured oxygen saturation levels. Pulsed dye lasers at 585, 590, 595, 600, 633 nm, a 694 nm ruby laser, a 755 nm alexandrite laser, and a 1,064 nm Nd:Yag laser were used, all with 1.5-3 milliseconds pulse width and similar exposure spot size. RESULTS: Selectivity (a lower fluence threshold) for venous blood was maximal at 694 nm, and significant at 595, 600, 633, and 755 nm. At 633 nm, a wavelength with strong relative absorption by metHb, selectivity for venous blood was much less than expected. The Nd:YAG laser at 1,064 nm showed significant selectivity for arterial blood. CONCLUSION: Preferential photocoagulation of venous blood is possible at wavelengths with a high Hb/HbO(2) absorption coefficient ratio. Laser-induced metHb may also affect wavelength-dependent selective photothermolysis. Venular malformations such as port wine stains could potentially be treated more selectively with ~630-780 nm sources. Nd:YAG laser pulses at 1,064 nm tend to affect arterial more than venous blood.


Assuntos
Coagulação Sanguínea/efeitos da radiação , Sangue/efeitos da radiação , Fotocoagulação a Laser/métodos , Lasers de Corante , Lasers de Estado Sólido , Veias/efeitos da radiação , Análise Química do Sangue , Hemoglobinas/química , Humanos , Técnicas In Vitro , Fotocoagulação a Laser/instrumentação , Metemoglobina/química , Oxigênio/sangue , Oxiemoglobinas/química , Veias/química
17.
Lasers Surg Med ; 44(10): 787-95, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23212624

RESUMO

BACKGROUND AND OBJECTIVES: Pretreatment of skin with ablative fractional lasers (AFXL) enhances the uptake of topical photosensitizers used in photodynamic therapy (PDT). Distribution of photosensitizer into skin layers may depend on depth of laser channels and incubation time. This study evaluates whether depth of intradermal laser channels and incubation time may affect AFXL-assisted delivery of methyl aminolevulinate (MAL). MATERIALS AND METHODS: Yorkshire swine were treated with CO2 AFXL at energy levels of 37, 190, and 380 mJ/laser channel and subsequent application of MAL cream (Metvix) for 30, 60, 120, and 180 minutes incubation time. Fluorescence photography and fluorescence microscopy quantified MAL-induced porphyrin fluorescence (PpIX) at the skin surface and at five specific skin depths (120, 500, 1,000, 1,500, and 1,800 µm). RESULTS: Laser channels penetrated into superficial (∼300 µm), mid (∼1,400 µm), and deep dermis/upper subcutaneous fat layer (∼2,100 µm). Similar fluorescence intensities were induced at the skin surface and throughout skin layers independent of laser channel depth (180 minutes; P < 0.19). AFXL accelerated PpIX fluorescence from skin surface to deep dermis. After laser exposure and 60 minutes MAL incubation, surface fluorescence was significantly higher compared to intact, not laser-exposed skin at 180 minutes (AFXL-MAL 60 minutes vs. MAL 180 minutes, 69.16 a.u. vs. 23.49 a.u.; P < 0.01). Through all skin layers (120-1,800 µm), laser exposure and 120 minutes MAL incubation induced significantly higher fluorescence intensities in HF and dermis than non-laser exposed sites at 180 minutes (1,800 µm, AFXL-MAL 120 minutes vs. MAL 180 minutes, HF 14.76 a.u. vs. 6.69 a.u. and dermis 6.98 a.u. vs. 5.87 a.u.; P < 0.01). CONCLUSIONS: AFXL pretreatment accelerates PpIX accumulation, but intradermal depth of laser channels does not affect porphyrin accumulation. Further studies are required to examine these findings in clinical trials.


Assuntos
Ácido Aminolevulínico/análogos & derivados , Sistemas de Liberação de Medicamentos , Lasers de Gás , Fármacos Fotossensibilizantes/administração & dosagem , Pele/efeitos da radiação , Ácido Aminolevulínico/administração & dosagem , Ácido Aminolevulínico/farmacocinética , Animais , Feminino , Fluorescência , Fármacos Fotossensibilizantes/farmacocinética , Porfirinas , Pele/metabolismo , Sus scrofa , Fatores de Tempo
18.
Lasers Surg Med ; 44(2): 175-83, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22170298

RESUMO

BACKGROUND AND OBJECTIVES: The success of permanent laser hair removal suggests that selective photothermolysis (SP) of sebaceous glands, another part of hair follicles, may also have merit. About 30% of sebum consists of fats with copious CH(2) bond content. SP was studied in vitro, using free electron laser (FEL) pulses at an infrared CH(2) vibrational absorption wavelength band. METHODS: Absorption spectra of natural and artificially prepared sebum were measured from 200 to 3,000 nm, to determine wavelengths potentially able to target sebaceous glands. The Jefferson National Accelerator superconducting FEL was used to measure photothermal excitation of aqueous gels, artificial sebum, pig skin, human scalp, and forehead skin (sebaceous sites). In vitro skin samples were exposed to FEL pulses from 1,620 to 1,720 nm, spot diameter 7-9.5 mm with exposure through a cold 4°C sapphire window in contact with the skin. Exposed and control tissue samples were stained using H&E, and nitroblue tetrazolium chloride staining (NBTC) was used to detect thermal denaturation. RESULTS: Natural and artificial sebum both had absorption peaks near 1,210, 1,728, 1,760, 2,306 and 2,346 nm. Laser-induced heating of artificial sebum was approximately twice that of water at 1,710 and 1,720 nm, and about 1.5× higher in human sebaceous glands than in water. Thermal camera imaging showed transient focal heating near sebaceous hair follicles. Histologically, skin samples exposed to ~1,700 nm, ~100-125 milliseconds pulses showed evidence of selective thermal damage to sebaceous glands. Sebaceous glands were positive for NBTC staining, without evidence of selective loss in samples exposed to the laser. Epidermis was undamaged in all samples. CONCLUSIONS: SP of sebaceous glands appears to be feasible. Potentially, optical pulses at ~1,720 or ~1,210 nm delivered with large beam diameter and appropriate skin cooling in approximately 0.1 seconds may provide an alternative treatment for acne.


Assuntos
Lasers , Glândulas Sebáceas/efeitos da radiação , Sebo/efeitos da radiação , Animais , Humanos , Técnicas In Vitro , Masculino , Método de Monte Carlo , Projetos Piloto , Glândulas Sebáceas/química , Sebo/química , Pele/química , Pele/efeitos da radiação , Espectrofotometria , Suínos , Água/química
19.
Lasers Surg Med ; 43(7): 621-31, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22057490

RESUMO

BACKGROUND: Photodynamic therapy (PDT) using topical aminolevulinic acid (ALA) depends on local drug uptake, metabolism to porphyrins, and depth of light penetration using different wavelengths. Topical ALA-PDT has limited depth of drug penetration. We studied induced porphyrin distribution and PDT after intradermal ALA administration using different drug concentrations followed by high-fluence red light irradiation. MATERIALS AND METHODS: Intradermal injections (∼2 mm deep) of ALA concentrations from 0.0005% to 1% were studied in swine to evaluated porphyrin fluorescence before PDT and clinical and histological damage 24 hours after PDT. Porphyrin accumulation was measured by fluorescence microscopy of frozen section. PDT was performed 3 hours after intradermal injections using a 635 nm LED array at a fluence of 200 J/cm2 . Skin responses to PDT were observed grossly and by histology (blind evaluation). RESULTS: Intradermal ALA caused porphyrin accumulation in epidermis, hair follicles (HF), sebaceous glands (SG), sweat glands (eccrine glands, EG and apocrine glands, AG), and subcutaneous fat. Significant differences of fluorescence intensity were observed between different skin structures (P < 0.05), but there was no significant difference comparing HF to SG; epidermis with either HF or SG; and dermis with fat (P > 0.05). Intradermal ALA is potent. ALA concentrations ≥0.25% followed by red light exposures caused a very intense vascular PDT reaction. Moderate doses of injected ALA concentration (∼0.06%), selectively targeted EG. Low doses (≤0.016%) targeted fat; producing fat necrosis with minimal inflammation, manifested both clinically and histologically. In contrast to topical ALA-PDT, intradermal ALA-PDT can effectively photosensitize deep skin structures. CONCLUSION: Potentially, intradermal ALA-PDT using various ALA concentrations may be useful for treating vascular lesions (malformations, hemangiomas, tumors), EG/AG disorders, fat or deep targets in skin.


Assuntos
Ácido Aminolevulínico/administração & dosagem , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Pele/efeitos dos fármacos , Ácido Aminolevulínico/farmacocinética , Animais , Relação Dose-Resposta a Droga , Feminino , Injeções Intradérmicas , Microscopia de Fluorescência , Fármacos Fotossensibilizantes/farmacocinética , Protoporfirinas/farmacocinética , Pele/metabolismo , Pele/patologia , Gordura Subcutânea/metabolismo , Suínos
20.
Sci Adv ; 7(41): eabj0864, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623914

RESUMO

Skin wounds are immense medical and socioeconomic burdens, and autologous skin grafting remains the gold standard for wound repair. We recently found that full-thickness micro skin tissue columns (MSTCs) can be harvested with minimal donor site morbidity, and that MSTCs applied to wounds "randomly" (without maintaining their natural epidermal-dermal orientation) can accelerate re-epithelialization. However, despite MSTCs containing all the cellular and extracellular contents of full-thickness skin, normal dermal architecture was not restored by random MSTCs. In this study, we developed a magnetically induced assembly method to produce constructs of densely packed, oriented MSTCs that closely resemble the overall architecture of full-thickness skin to test the hypothesis that maintaining MSTCs' orientation could further hasten healing and restore a normal dermis. Our method led to faster and more orderly re-epithelialization but unexpectedly did not improve the retention of dermal architecture, which reveals a hitherto unappreciated role for tissue morphology in determining dermal remodeling outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA