Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Cardiovasc Disord ; 24(1): 329, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943084

RESUMO

BACKGROUND: Pulmonary transit time (PTT) can be measured automatically from arterial input function (AIF) images of dual sequence first-pass perfusion imaging. PTT has been validated against invasive cardiac catheterisation correlating with both cardiac output and left ventricular filling pressure (both important prognostic markers in heart failure). We hypothesized that prolonged PTT is associated with clinical outcomes in patients with heart failure. METHODS: We recruited outpatients with a recent diagnosis of non-ischaemic heart failure with left ventricular ejection fraction (LVEF) < 50% on referral echocardiogram. Patients were followed up by a review of medical records for major adverse cardiovascular events (MACE) defined as all-cause mortality, heart failure hospitalization, ventricular arrhythmia, stroke or myocardial infarction. PTT was measured automatically from low-resolution AIF dynamic series of both the LV and RV during rest perfusion imaging, and the PTT was measured as the time (in seconds) between the centroid of the left (LV) and right ventricle (RV) indicator dilution curves. RESULTS: Patients (N = 294) were followed-up for median 2.0 years during which 37 patients (12.6%) had at least one MACE event. On univariate Cox regression analysis there was a significant association between PTT and MACE (Hazard ratio (HR) 1.16, 95% confidence interval (CI) 1.08-1.25, P = 0.0001). There was also significant association between PTT and heart failure hospitalisation (HR 1.15, 95% CI 1.02-1.29, P = 0.02) and moderate correlation between PTT and N-terminal pro B-type natriuretic peptide (NT-proBNP, r = 0.51, P < 0.001). PTT remained predictive of MACE after adjustment for clinical and imaging factors but was no longer significant once adjusted for NT-proBNP. CONCLUSIONS: PTT measured automatically during CMR perfusion imaging in patients with recent onset non-ischaemic heart failure is predictive of MACE and in particular heart failure hospitalisation. PTT derived in this way may be a non-invasive marker of haemodynamic congestion in heart failure and future studies are required to establish if prolonged PTT identifies those who may warrant closer follow-up or medicine optimisation to reduce the risk of future adverse events.


Assuntos
Insuficiência Cardíaca , Imagem de Perfusão do Miocárdio , Valor Preditivo dos Testes , Volume Sistólico , Função Ventricular Esquerda , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Fatores de Tempo , Prognóstico , Imagem de Perfusão do Miocárdio/métodos , Fatores de Risco , Circulação Pulmonar , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/diagnóstico por imagem , Medição de Risco , Função Ventricular Direita , Imageamento por Ressonância Magnética
2.
Proc Natl Acad Sci U S A ; 115(6): 1358-1363, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29295933

RESUMO

Genetic studies of Wallerian degeneration have led to the identification of signaling molecules (e.g., dSarm/Sarm1, Axundead, and Highwire) that function locally in axons to drive degeneration. Here we identify a role for the Drosophila C2H2 zinc finger transcription factor Pebbled [Peb, Ras-responsive element binding protein 1 (RREB1) in mammals] in axon death. Loss of Peb in Drosophila glutamatergic sensory neurons results in either complete preservation of severed axons, or an axon death phenotype where axons fragment into large, continuous segments, rather than completely disintegrate. Peb is expressed in developing and mature sensory neurons, suggesting it is required to establish or maintain their competence to undergo axon death. peb mutant phenotypes can be rescued by human RREB1, and they exhibit dominant genetic interactions with dsarm mutants, linking peb/RREB1 to the axon death signaling cascade. Surprisingly, Peb is only able to fully block axon death signaling in glutamatergic, but not cholinergic sensory neurons, arguing for genetic diversity in axon death signaling programs in different neuronal subtypes. Our findings identify a transcription factor that regulates axon death signaling, and peb mutant phenotypes of partial fragmentation reveal a genetically accessible step in axon death signaling.


Assuntos
Axônios/patologia , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Degeneração Walleriana/patologia , Animais , Animais Geneticamente Modificados , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Neurônios Colinérgicos/patologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Degeneração Walleriana/genética , Degeneração Walleriana/metabolismo , Asas de Animais/inervação , Asas de Animais/metabolismo , Dedos de Zinco/genética
3.
Proc Natl Acad Sci U S A ; 113(21): 6029-34, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162329

RESUMO

Actin, spectrin, and associated molecules form a periodic, submembrane cytoskeleton in the axons of neurons. For a better understanding of this membrane-associated periodic skeleton (MPS), it is important to address how prevalent this structure is in different neuronal types, different subcellular compartments, and across different animal species. Here, we investigated the organization of spectrin in a variety of neuronal- and glial-cell types. We observed the presence of MPS in all of the tested neuronal types cultured from mouse central and peripheral nervous systems, including excitatory and inhibitory neurons from several brain regions, as well as sensory and motor neurons. Quantitative analyses show that MPS is preferentially formed in axons in all neuronal types tested here: Spectrin shows a long-range, periodic distribution throughout all axons but appears periodic only in a small fraction of dendrites, typically in the form of isolated patches in subregions of these dendrites. As in dendrites, we also observed patches of periodic spectrin structures in a small fraction of glial-cell processes in four types of glial cells cultured from rodent tissues. Interestingly, despite its strong presence in the axonal shaft, MPS is disrupted in most presynaptic boutons but is present in an appreciable fraction of dendritic spine necks, including some projecting from dendrites where such a periodic structure is not observed in the shaft. Finally, we found that spectrin is capable of adopting a similar periodic organization in neurons of a variety of animal species, including Caenorhabditis elegans, Drosophila, Gallus gallus, Mus musculus, and Homo sapiens.


Assuntos
Actinas/metabolismo , Axônios/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Dendritos/metabolismo , Espectrina/metabolismo , Actinas/genética , Animais , Caenorhabditis elegans , Linhagem Celular , Membrana Celular/genética , Galinhas , Citoesqueleto/genética , Dendritos/genética , Drosophila melanogaster , Camundongos , Especificidade da Espécie , Espectrina/genética
4.
Open Heart ; 10(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37591634

RESUMO

OBJECTIVES: To determine baseline characteristics predictive of left ventricular ejection fraction (LVEF) recovery in patients diagnosed with heart failure with reduced ejection fraction (HFrEF) and presumed non-ischaemic aetiology. METHODS: We prospectively recruited patients who were diagnosed with HFrEF (LVEF ≤40%) on echocardiography and subsequently underwent cardiac MRI. Patients were excluded if they had a known history of coronary artery disease (>70% on invasive coronary angiography), myocardial infarction, coronary revascularisation or anginal symptoms. At cardiac MRI assessment, patients were categorised as either ongoing HFrEF or heart failure with improved ejection fraction (HFimpEF, LVEF >40% with ≥10% of absolute improvement). Clinical characteristics were compared between the groups. Logistic regression was performed to identify variables that were associated with LVEF recovery. Optimal cut-offs in QRISK3 score and baseline LVEF for prediction of LVEF recovery were identified through receiver operating characteristic curve analysis. RESULTS: A total of 407 patients were diagnosed with HFrEF, and 139 (34%) attained HFimpEF at cardiac MRI assessment (median 63 days, IQR 41-119 days). Mean age of the patients was 63±12 years, and 260 (63.9%) were male. At multivariate logistic regression, both QRISK3 score (HR 0.978; 95% CI 0.963 to 0.993, p=0.004) and baseline LVEF (HR 1.044; 95% CI 1.015 to 1.073, p=0.002) were independent predictors of HFimpEF. Among patients with baseline LVEF ≤25%, only 22 (21.8%) recovered. In patients with baseline LVEF 25-40%, QRISK3 score >18% was associated with lack of recovery (HR 2.75; 95% CI 1.70 to 4.48, p<0.001). Additionally, QRISK3 score was associated with the presence of ischaemic late gadolinium enhancement (HR 1.035; 95% CI 1.018 to 1.053, p<0.001). CONCLUSIONS: The QRISK3 score helps identify patients with HFrEF with undiagnosed vascular disease. Patients with either a very low baseline LVEF or a high QRISK3 score have less chance of left ventricular recovery and should be prioritised for early cardiac MRI and close monitoring.


Assuntos
Insuficiência Cardíaca , Função Ventricular Esquerda , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Volume Sistólico , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/etiologia , Meios de Contraste , Gadolínio
5.
ESC Heart Fail ; 10(5): 3067-3076, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37596895

RESUMO

AIMS: Left ventricular filling pressure (LVFP) can be estimated from cardiovascular magnetic resonance (CMR). We aimed to investigate whether CMR-derived LVFP is associated with signs, symptoms, and prognosis in patients with recently diagnosed heart failure (HF). METHODS AND RESULTS: This study recruited 454 patients diagnosed with HF who underwent same-day CMR and clinical assessment between February 2018 and January 2020. CMR-derived LVFP was calculated, as previously, from long- and short-axis cines. CMR-derived LVFP association with symptoms and signs of HF was investigated. Patients were followed for median 2.9 years (interquartile range 1.5-3.6 years) for major adverse cardiovascular events (MACE), defined as the composite of cardiovascular death, HF hospitalization, non-fatal stroke, and non-fatal myocardial infarction. The mean age was 62 ± 13 years, 36% were female (n = 163), and 30% (n = 135) had raised LVFP. Forty-seven per cent of patients had an ejection fraction < 40% during CMR assessment. Patients with raised LVFP were more likely to have pleural effusions [hazard ratio (HR) 3.2, P = 0.003], orthopnoea (HR 2.0, P = 0.008), lower limb oedema (HR 1.7, P = 0.04), and breathlessness (HR 1.7, P = 0.01). Raised CMR-derived LVFP was associated with a four-fold risk of HF hospitalization (HR 4.0, P < 0.0001) and a three-fold risk of MACE (HR 3.1, P < 0.0001). In the multivariable model, raised CMR-derived LVFP was independently associated with HF hospitalization (adjusted HR 3.8, P = 0.0001) and MACE (adjusted HR 3.0, P = 0.0001). CONCLUSIONS: Raised CMR-derived LVFP is strongly associated with symptoms and signs of HF. In addition, raised CMR-derived LVFP is independently associated with subsequent HF hospitalization and MACE.


Assuntos
Insuficiência Cardíaca , Função Ventricular Esquerda , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Volume Sistólico , Estudos Prospectivos , Insuficiência Cardíaca/diagnóstico , Prognóstico , Espectroscopia de Ressonância Magnética
6.
Sci Rep ; 13(1): 19529, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945646

RESUMO

Multiple sclerosis (MS), a chronic neurodegenerative disease driven by damage to the protective myelin sheath, is currently incurable. Today, all clinically available treatments modulate the immune-mediated symptoms of the disease but they fail to stop neurodegeneration in many patients. Remyelination, the regenerative process of myelin repair by oligodendrocytes, which is considered a necessary step to protect demyelinated axons and stop neuronal death, is impaired in MS patients. One of the major obstacles to finding effective remyelinating drugs is the lack of biomimetic drug screening platforms that enable quantification of compounds' potential to stimulate 3D myelination in the physiologically relevant axon-like environment. To address this need, we built a unique myelination drug discovery platform, by expanding our previously developed technology, artificial axons (AAs), which enables 3D-printing of synthetic axon mimics with the geometry and mechanical properties closely resembling those of biological axons. This platform allows for high-throughput phenotypic myelination assay based on quantification of 3D wrapping of myelin membrane around axons in response to compounds. Here, we demonstrate quantification of 3D myelin wrapping by rat oligodendrocytes around the axon mimics in response to a small library of known pro-myelinating compounds. This assay shows pro-myelinating activity for all tested compounds consistent with the published in vitro and in vivo data, demonstrating predictive power of AA platform. We find that stimulation of myelin wrapping by these compounds is dose-dependent, providing a facile means to quantify the compounds' potency and efficacy in promoting myelin wrapping. Further, the ranking of relative efficacy among these compounds differs in this 3D axon-like environment as compared to a traditional oligodendrocyte 2D differentiation assay quantifying area of deposited myelin membrane. Together, we demonstrate that the artificial axons platform and associated phenotypic myelin wrapping assay afford direct evaluation of myelin wrapping by oligodendrocytes in response to soluble compounds in an axon-like environment, providing a predictive tool for the discovery of remyelinating therapies.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Humanos , Ratos , Animais , Biomimética , Axônios/fisiologia , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Esclerose Múltipla/tratamento farmacológico
7.
Sci Rep ; 13(1): 14640, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669972

RESUMO

Left ventricular fibrosis can be identified by late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) in some veteran athletes. We aimed to investigate prevalence of ventricular fibrosis in veteran athletes and associations with cardiac arrhythmia. 50 asymptomatic male endurance athletes were recruited. They underwent CMR imaging including volumetric analysis, bright blood (BB) and dark blood (DB) LGE, motion corrected (MOCO) quantitative stress and rest perfusion and T1/T2/extracellular volume mapping. Athletes underwent 12-lead electrocardiogram (ECG) and 24-h ECG. Myocardial fibrosis was identified in 24/50 (48%) athletes. All fibrosis was mid-myocardial in the basal-lateral left ventricular wall. Blood pressure was reduced in athletes without fibrosis compared to controls, but not athletes with fibrosis. Fibrotic areas had longer T2 time (44 ± 4 vs. 40 ± 2 ms, p < 0.0001) and lower rest myocardial blood flow (MBF, 0.5 ± 0.1 vs. 0.6 ± 0.1 ml/g/min, p < 0.0001). On 24-h ECG, athletes with fibrosis had greater burden of premature ventricular beats (0.3 ± 0.6 vs. 0.05 ± 0.2%, p = 0.03), with higher prevalence of ventricular couplets and triplets (33 vs. 8%, p = 0.02). In veteran endurance athletes, myocardial fibrosis is common and associated with an increased burden of ventricular ectopy. Possible mechanisms include inflammation and blood pressure. Further studies are needed to establish whether fibrosis increases risk of malignant arrhythmic events.


Assuntos
Complexos Ventriculares Prematuros , Veteranos , Humanos , Masculino , Meios de Contraste , Gadolínio , Doença do Sistema de Condução Cardíaco
8.
JACC Case Rep ; 3(6): 944-949, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34317662

RESUMO

A previously fit and well 30-year-old man presented with palpitations, fever, and pleuritic chest pain. Multimodality imaging and histopathology confirmed the diagnosis of primary cardiac angiosarcoma. We present the details of the presentation, diagnostic process using multimodality imaging, and clinical management. (Level of Difficulty: Beginner.).

9.
Neuron ; 95(1): 78-91.e5, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683272

RESUMO

Axon degeneration is a hallmark of neurodegenerative disease and neural injury. Axotomy activates an intrinsic pro-degenerative axon death signaling cascade involving loss of the NAD+ biosynthetic enzyme Nmnat/Nmnat2 in axons, activation of dSarm/Sarm1, and subsequent Sarm-dependent depletion of NAD+. Here we identify Axundead (Axed) as a mediator of axon death. axed mutants suppress axon death in several types of axons for the lifespan of the fly and block the pro-degenerative effects of activated dSarm in vivo. Neurodegeneration induced by loss of the sole fly Nmnat ortholog is also fully blocked by axed, but not dsarm, mutants. Thus, pro-degenerative pathways activated by dSarm signaling or Nmnat elimination ultimately converge on Axed. Remarkably, severed axons morphologically preserved by axon death pathway mutations remain integrated in circuits and able to elicit complex behaviors after stimulation, indicating that blockade of axon death signaling results in long-term functional preservation of axons.


Assuntos
Proteínas do Domínio Armadillo/genética , Axônios/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/genética , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Degeneração Walleriana/genética , Animais , Animais Geneticamente Modificados , Proteínas do Domínio Armadillo/metabolismo , Antenas de Artrópodes/lesões , Antenas de Artrópodes/inervação , Axotomia , Comportamento Animal , Western Blotting , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Asseio Animal , Imunidade Ativa , NAD/metabolismo , Neurônios/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Optogenética , Degeneração Walleriana/metabolismo , Asas de Animais/lesões , Asas de Animais/inervação
10.
Neuron ; 88(5): 848-850, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26637791

RESUMO

Immature neural circuits form excessive synaptic connections that are later refined through pruning of exuberant branches. In this issue, Bornstein et al. identify a role for JNK signaling in selective axon elimination through disassembly of cell adhesion complexes.


Assuntos
Adesão Celular/genética , Sistema de Sinalização das MAP Quinases/genética , Corpos Pedunculados/citologia , Corpos Pedunculados/crescimento & desenvolvimento , Plasticidade Neuronal/genética , Receptor EphA5/genética , Animais
11.
Nat Commun ; 2: 393, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21750546

RESUMO

TorsinA is an AAA+ ATPase located within the lumen of the endoplasmic reticulum and nuclear envelope, with a mutant form causing early onset torsion dystonia (DYT1). Here we report a new function for torsinA in endoplasmic reticulum-associated degradation (ERAD). Retro-translocation and proteosomal degradation of a mutant cystic fibrosis transmembrane conductance regulator (CFTRΔF508) was inhibited by downregulation of torsinA or overexpression of mutant torsinA, and facilitated by increased torsinA. Retro-translocation of cholera toxin was also decreased by downregulation of torsinA. TorsinA associates with proteins implicated in ERAD, including Derlin-1, VIMP and p97. Further, torsinA reduces endoplasmic reticulum stress in nematodes overexpressing CFTRΔF508, and fibroblasts from DYT1 dystonia patients are more sensitive than controls to endoplasmic reticulum stress and less able to degrade mutant CFTR. Therefore, compromised ERAD function in the cells of DYT1 patients may increase sensitivity to endoplasmic reticulum stress with consequent alterations in neuronal function contributing to the disease state.


Assuntos
Distonia Muscular Deformante/fisiopatologia , Retículo Endoplasmático/fisiologia , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Análise de Variância , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Toxina da Cólera/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Distonia Muscular Deformante/genética , Fibroblastos , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL
12.
J Cell Sci ; 121(Pt 20): 3476-86, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18827015

RESUMO

A specific mutation (DeltaE) in torsinA underlies most cases of the dominantly inherited movement disorder, early-onset torsion dystonia (DYT1). TorsinA, a member of the AAA+ ATPase superfamily, is located within the lumen of the nuclear envelope (NE) and endoplasmic reticulum (ER). We investigated an association between torsinA and nesprin-3, which spans the outer nuclear membrane (ONM) of the NE and links it to vimentin via plectin in fibroblasts. Mouse nesprin-3alpha co-immunoprecipitated with torsinA and this involved the C-terminal region of torsinA and the KASH domain of nesprin-3alpha. This association with human nesprin-3 appeared to be stronger for torsinADeltaE than for torsinA. TorsinA also associated with the KASH domains of nesprin-1 and -2 (SYNE1 and 2), which link to actin. In the absence of torsinA, in knockout mouse embryonic fibroblasts (MEFs), nesprin-3alpha was localized predominantly in the ER. Enrichment of yellow fluorescent protein (YFP)-nesprin-3 in the ER was also seen in the fibroblasts of DYT1 patients, with formation of YFP-positive globular structures enriched in torsinA, vimentin and actin. TorsinA-null MEFs had normal NE structure, but nuclear polarization and cell migration were delayed in a wound-healing assay, as compared with wild-type MEFs. These studies support a role for torsinA in dynamic interactions between the KASH domains of nesprins and their protein partners in the lumen of the NE, with torsinA influencing the localization of nesprins and associated cytoskeletal elements and affecting their role in nuclear and cell movement.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Linhagem Celular , Movimento Celular/genética , Proteínas do Citoesqueleto , Distonia Muscular Deformante/genética , Distonia Muscular Deformante/metabolismo , Embrião de Mamíferos/metabolismo , Retículo Endoplasmático/genética , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Chaperonas Moleculares/genética , Mutação , Proteínas do Tecido Nervoso/genética , Membrana Nuclear/genética , Proteínas Nucleares/genética , Plectina/genética , Plectina/metabolismo , Estrutura Terciária de Proteína/fisiologia , Vimentina/genética , Vimentina/metabolismo , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA