Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Soft Matter ; 19(9): 1709-1719, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36756932

RESUMO

We propose a classical density functional theory model to study the self-assembly of polymeric surfactants on curved surfaces. We use this model to investigate the thermodynamics of phase separation of a binary mixture of size asymmetric miscible surfactants on cylindrical and spherical surfaces, and observe that phase separation driven by size alone is thermodynamically unfavorable on both cylindrical and spherical surfaces. We use the theory, supplemented by dissipative particle dynamics (DPD) simulations, to predict pattern formation on a non-uniform surface with regions of positive and negative curvature. Our results suggest potential ways to couple surface topography and polymeric surfactants to design surfaces coated with non-uniform patterns.

2.
Proc Natl Acad Sci U S A ; 117(16): 8719-8726, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32241887

RESUMO

Rapid methods for diagnosis of bacterial infections are urgently needed to reduce inappropriate use of antibiotics, which contributes to antimicrobial resistance. In many rapid diagnostic methods, DNA oligonucleotide probes, attached to a surface, bind to specific nucleotide sequences in the DNA of a target pathogen. Typically, each probe binds to a single target sequence; i.e., target-probe binding is monovalent. Here we show using computer simulations that the detection sensitivity and specificity can be improved by designing probes that bind multivalently to the entire length of the pathogen genomic DNA, such that a given probe binds to multiple sites along the target DNA. Our results suggest that multivalent targeting of long pieces of genomic DNA can allow highly sensitive and selective binding of the target DNA, even if competing DNA in the sample also contains binding sites for the same probe sequences. Our results are robust to mild fragmentation of the bacterial genome. Our conclusions may also be relevant for DNA detection in other fields, such as disease diagnostics more broadly, environmental management, and food safety.


Assuntos
Desenho Assistido por Computador , Sondas de DNA , DNA Bacteriano/isolamento & purificação , Genoma Bacteriano , Sondas de Oligonucleotídeos , Biologia Computacional/métodos , Simulação por Computador , DNA Bacteriano/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos
3.
J Phys Chem A ; 122(37): 7421-7426, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30148958

RESUMO

We report the assignment and analysis of 176 transitions belonging to a librational band of the (H2O)6 cage isomer near 525 cm-1(15 THz). From a fit of the transitions to an asymmetric top model, we observe both dramatic changes in the rotational constants relative to the ground state, indicating significant nonrigidity, and striking enhancement in the tunneling motions that break and reform the hydrogen bonds in the cluster. This is the fifth water cluster system to display such an enhancement in the 15 THz librational region, the details of which may help to elucidate the hydrogen bond dynamics occurring in bulk liquid water.

4.
J Phys Chem A ; 118(35): 7338-48, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24576262

RESUMO

Global optimization for molecular clusters can be significantly more difficult than for atomic clusters because of the coupling between orientational and translational degrees of freedom. A coarse-grained representation of the potential can reduce the complexity of this problem, while retaining the essential features of the intermolecular interactions. In this study, we use a basin-hopping algorithm to locate putative global minima for clusters of coarse-grained water molecules modeled using a monatomic water potential for cluster sizes 3 ≤ N ≤ 55. We characterize these structures and identify structural trends using ideas from graph theory. The agreement with atomistic results and experiment is rather patchy, which we attribute to the tetrahedral bias in the three-body potential that results in too few nearest neighbor contacts and premature emergence of bulk-like structure. In spite of this issue, the results offer further useful insight into the relationship between the structure of clusters and bulk phases, and the mathematical form of a widely used model potential.

5.
J Chem Phys ; 141(18): 18C525, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25399190

RESUMO

The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

6.
J Phys Chem B ; 127(40): 8551-8564, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37782825

RESUMO

Adenine DNA glycosylase (MutY) is a monofunctional glycosylase, removing adenines (A) misinserted opposite 8-oxo-7,8-dihydroguanine (OG), a common product of oxidative damage to DNA. Through multiscale calculations, we decipher a detailed adenine excision mechanism of MutY that is consistent with all available experimental data, involving an initial protonation step and two nucleophilic displacement steps. During the first displacement step, N-glycosidic bond cleavage is accompanied by the attack of the carboxylate group of residue Asp144 at the anomeric carbon (C1'), forming a covalent glycosyl-enzyme intermediate to stabilize the fleeting oxocarbenium ion. After departure of the excised base, water nucleophiles can be recruited to displace Asp144, completing the catalytic cycle with retention of stereochemistry at the C1' position. The two displacement reactions are found to mostly involve the movement of the oxocarbenium ion, occurring with large charge reorganization and thus sensitive to the internal electric field (IEF) exerted by the polar protein environment. Intriguingly, we find that the negatively charged carboxylate group is a good nucleophile for the oxocarbenium ion, yet an unactivated water molecule is not, and that the electric field catalysis strategy is used by the enzyme to enable its unique double-displacement reaction mechanism. A strong IEF, pointing toward 5' direction of the substrate sugar ring, greatly facilitates the second displacement reaction at the expense of elevating the barrier of the first one, thereby allowing both reactions to occur. These findings not only increase our understanding of the strategies used by DNA glycosylases to repair DNA lesions, but also have important implications for how internal/external electric field can be applied to modulate chemical reactions.


Assuntos
DNA Glicosilases , N-Glicosil Hidrolases , N-Glicosil Hidrolases/química , Adenina/química , Reparo do DNA , DNA Glicosilases/metabolismo , DNA/química , Água
7.
Chem Sci ; 11(11): 2987-2992, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-34122800

RESUMO

Alternative ('repeat') determinations of organic crystal structures deposited in the Cambridge Structural Database are analysed to characterise the nature and magnitude of the differences between structure solutions obtained by diffraction methods. Of the 3132 structure pairs considered, over 20% exhibited local structural differences exceeding 0.25 Å. In most cases (about 83%), structural optimisation using density functional theory (DFT) resolved the differences. Many of the cases where distinct and chemically significant structural differences remained after optimisation involved differently positioned hydroxyl groups, with obvious implications for the correct description of hydrogen bonding. 1H and 13C chemical shifts from solid-state NMR experiments are proposed as an independent methodology in cases where DFT optimisation fails to resolve discrepancies.

8.
Adv Mater ; 30(35): e1802551, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29992734

RESUMO

Due to the ability to manipulate photons at nanoscale, plasmonics has become one of the most important branches in nanophotonics. The prerequisites for the technological application of plasmons include high confining ability (λ0 /λp ), low damping, and easy tunability. However, plasmons in typical plasmonic materials, i.e., noble metals, cannot satisfy these three requirements simultaneously and cause a disconnection to modern electronics. Here, the indium arsenide (InAs) nanowire is identified as a material that satisfies all the three prerequisites, providing a natural analogy with modern electronics. The dispersion relation of InAs plasmons is determined using the nanoinfrared imaging technique, and show that their associated wavelengths and damping ratio can be tuned by altering the nanowire diameter and dielectric environment. The InAs plasmons possess advantages such as high confining ability, low loss, and ease of fabrication. The observation of InAs plasmons could enable novel plasmonic circuits for future subwavelength applications.

9.
Lab Chip ; 17(16): 2852-2860, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28726916

RESUMO

A 3-D microfluidic system consisting of microchamber arrays embedded in a collagen hydrogel with tuneable biochemical gradients that mimics the tumour microenvironment of mammary glands was constructed for the investigation on the interactions between invasive breast cancer cells and stromal cells. The hollow microchambers in collagen provide a very similar 3-D environment to that in vivo that regulates collective cellular dynamics and behaviour, while the microfluidic channels surrounding the collagen microchamber arrays allow one to impose complex concentration gradients of specific biological molecules or drugs. We found that breast epithelial cells (MCF-10A) seeded in the microchambers formed lumen-like structures similar to those in epithelial layers. When MCF-10A cells were co-cultured with invasive breast cancer cells (MDA-MB-231), the formation of lumen-like structures in the microchambers was inhibited, indicating the capability of cancer cells to disrupt the structures formed by surrounding cells for further invasion and metastasis. Subsequent mechanism studies showed that down regulation of E-cad expression due to MMPs produced by the cancer cells plays a dominant role in determining the cellular behaviour. Our microfluidic system offers a robust platform for high throughput studies that aim to understand combinatorial effects of multiple biochemical and microenvironmental factors.


Assuntos
Técnicas de Cultura de Células/instrumentação , Matriz Extracelular/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Biológicos , Microambiente Tumoral/fisiologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Desenho de Equipamento , Corantes Fluorescentes , Humanos
10.
Science ; 352(6290): 1194-7, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27257252

RESUMO

Clusters of eight water molecules play an important role in theoretical analysis of aqueous structure and dynamics but have proven to be challenging experimental targets. Here we report the high-resolution spectroscopic characterization of the water octamer. Terahertz (THz) vibration-rotation-tunneling (VRT) spectroscopy resolved 99 transitions with 1 part per million precision in a narrow range near 46.5 wave numbers, which were assigned to the h16 octamer via detailed isotope dilution experiments. Fitting to a semi-rigid symmetric top model supports predictions of two coexisting cuboidal structures and provides precise values for the changes in their rotational constants. Comparison with theory and previous spectroscopic data provides a characterization of the two structures and the observed torsional vibration and supports the prediction that the D2d symmetry structure is lower in energy than the S4 isomer.

11.
J Chem Theory Comput ; 11(5): 2377-84, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-26574432

RESUMO

The sulfate ion is the most kosmotropic member of the Hofmeister series, but the chemical origins of this effect are unclear. We present a global optimization and energy landscape mapping study of microhydrated sulfate ions, SO4(2-)(H2O)n, in the size range 3 ≤ n ≤ 50. The clusters are modeled using a rigid-body empirical potential and optimized using basin-hopping Monte Carlo in conjunction with a move set including cycle inversions to explore hydrogen bond topologies. For clusters containing a few water molecules (n ≤ 6) we are able to reproduce ab initio global minima, either as global minima of the empirical potential, or as low-energy isomers. This result justifies applications to larger systems. Experimental studies have shown that dangling hydroxyl groups are present on the surfaces of pure water clusters, but absent in hydrated sulfate clusters up to n ≈ 43. Our global optimization results agree with this observation, with dangling hydroxyl groups absent from the low-lying minima of small clusters, but competitive in larger clusters.

12.
J Chem Theory Comput ; 10(12): 5476-82, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26583230

RESUMO

A set of benchmark systems is defined to compare different computational approaches for characterizing local minima, transition states, and pathways in atomic, molecular, and condensed matter systems. Comparisons between several commonly used methods are presented. The strengths and weaknesses are discussed, as well as implementation details that are important for achieving good performance. All of the benchmarks and methods are provided in an online database to make the implementation details available and the results reproducible. While this paper provides a snapshot of the benchmark results, the online framework is structured to be dynamic and incorporate new methods and codes as they are developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA