Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Sensors (Basel) ; 20(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967087

RESUMO

Compelling facial expression recognition (FER) processes have been utilized in very successful fields like computer vision, robotics, artificial intelligence, and dynamic texture recognition. However, the FER's critical problem with traditional local binary pattern (LBP) is the loss of neighboring pixels related to different scales that can affect the texture of facial images. To overcome such limitations, this study describes a new extended LBP method to extract feature vectors from images, detecting each image from facial expressions. The proposed method is based on the bitwise AND operation of two rotational kernels applied on LBP(8,1) and LBP(8,2) and utilizes two accessible datasets. Firstly, the facial parts are detected and the essential components of a face are observed, such as eyes, nose, and lips. The portion of the face is then cropped to reduce the dimensions and an unsharp masking kernel is applied to sharpen the image. The filtered images then go through the feature extraction method and wait for the classification process. Four machine learning classifiers were used to verify the proposed method. This study shows that the proposed multi-scale featured local binary pattern (MSFLBP), together with Support Vector Machine (SVM), outperformed the recent LBP-based state-of-the-art approaches resulting in an accuracy of 99.12% for the Extended Cohn-Kanade (CK+) dataset and 89.08% for the Karolinska Directed Emotional Faces (KDEF) dataset.


Assuntos
Reconhecimento Facial Automatizado , Expressão Facial , Máquina de Vetores de Suporte , Algoritmos , Humanos
2.
Sensors (Basel) ; 15(5): 11601-27, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26007721

RESUMO

This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors.


Assuntos
Diagnóstico por Imagem/instrumentação , Micro-Ondas , Simulação por Computador , Desenho de Equipamento , Modelos Teóricos , Reprodutibilidade dos Testes
3.
ScientificWorldJournal ; 2014: 812576, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24892092

RESUMO

In this paper, a novel design approach for a phase to sinusoid amplitude converter (PSAC) has been investigated. Two segments have been used to approximate the first sine quadrant. A first linear segment is used to fit the region near the zero point, while a second fourth-order parabolic segment is used to approximate the rest of the sine curve. The phase sample, where the polynomial changed, was chosen in such a way as to achieve the maximum spurious free dynamic range (SFDR). The invented direct digital frequency synthesizer (DDFS) has been encoded in VHDL and post simulation was carried out. The synthesized architecture exhibits a promising result of 90 dBc SFDR. The targeted structure is expected to show advantages for perceptible reduction of hardware resources and power consumption as well as high clock speeds.


Assuntos
Modelos Teóricos , Algoritmos
4.
Sci Rep ; 14(1): 6258, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491125

RESUMO

This study presented a unique, miniaturised asymmetric interconnected vertical stripe (IVS) design for terahertz (THz) frequency applications. Therefore, this research aimed to achieve a frequency response of 0 to 10 THz using a 5 × 5 µm2 Silicon (Si) substrate material. Meanwhile, various parametric examinations were conducted to investigate variations in the performance. For example, the unit cell selection process was carefully examined by using various design structures and modifying the structure by adding split gaps and connecting bars between vertical stripes. Furthermore, the proposed sandwich structure design was used to compute the absorbance and reflectance properties. All the analytical examinations were executed utilising the Computer Simulation Technology (CST) 2019 software. The introduced IVS metamaterial exhibits negative index behaviour and has a single resonance frequency of 5.23 THz with an acceptable magnitude of - 24.38 dB. Additionally, the quadruple-layer IVS structure exhibits optimised transmission coefficient behaviour between 3 and 6 THz and 7 to 9 THz, respectively. However, the magnitude of the transmission coefficient increased with the number of material layers. Besides that, the absorbance study shows that using a quadruple-layer structure obtains unique and promising results. Overall, the proposed asymmetric IVS metamaterial design achieves the required performance by using a compact structure rather than extending the dimensions of the design.

5.
Heliyon ; 10(4): e26232, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390122

RESUMO

This study developed a metamaterial-inspired split-ring resonator (SRR) based inversion symmetry-shaped structure for airport surveillance radar and local area wireless network applications. The proposed device exhibited suitability for S- and C-band applications, featuring distinct resonance peaks at 2.8 and 4.9 GHz, respectively. The two-layer double negative metamaterial unit cell comprises a copper-based resonator, patch, and a low-loss substrate material known as Rogers RT5800 with a thickness of 1.575 mm. The 8 × 8 mm2 structure unit cell was identified with an effective medium ratio (EMR) of 13.4 at the resonance peak of 2.8 GHz. With the alteration of the metamaterial unit cell structure, the electric field, surface current distribution, magnetic field, and design evolution were observed, analysed, and investigated in this study. Meanwhile, the retrieved data from the reflection and transmission coefficients from CST Microwave Studio were validated using the Ansys High-Frequency Structure Simulator (HFSS) software. A Vector Network Analyzer (VNA) further measured the numerical results. Based on the findings, the proposed novel double negative metamaterial device is suitable for radar communication and satellite applications, especially airport surveillance radar (ASR) and wireless local area network (WLAN), due to its high EMR at the desired resonance frequency.

6.
Heliyon ; 10(1): e23851, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192815

RESUMO

This study introduces a compact double negative metamaterial (DNM) composed of three split rings connected slab resonator (TSRCSR) based double-layer design with a high 13.9 EMR (effective medium ratio) value. A double-layer patch is introduced to achieve the novel double negative properties, including negative behaviours of effective medium parameters, including refractive index, permittivity, and permeability with a high effective medium ratio for the miniaturised size of the introduced unconventional material that is highly suitable for microwave S and C band covering applications. The popular low-loss Rogers RT5880 (thickness 1.575 mm) substrate and copper resonator materials are utilized to develop the metamaterial unit cell that offers triple resonance between frequencies from 1 to 8 GHz. Therefore, the proposed metamaterial exhibits resonance peaks at 2.75, 5.2, and 6.3 GHz, suitable for radar, communication satellite, and long-distance telecommunication applications, respectively. The commercially available simulator known as Computer Simulation Technology (CST) is adopted to develop and simulate the 8 × 8 mm2 metamaterial design. The simulation results of the introduced TSRCSR design structure were verified by adopting the Ansys High-Frequency Structure Simulator (HFSS). Furthermore, it was then proved with the help of equivalent circuit model findings gained from the Advanced Design Structure (ADS) software. On the other hand, the analytical results were further validated by measuring the TSRCSR design utilizing a Vector Network Analyzer (VNA). These analyses become one of the novelties of this work, where the compact TSRCSR metamaterial successfully gained small discrepancies in transmission coefficient values when compared to both analytical and measurement results. The proposed metamaterial is highly suggested for communication devices for its extensive effective characteristics and compactness.

7.
Heliyon ; 10(13): e33606, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040251

RESUMO

Here we report the synthesis of Sm-doped Na0.5Bi4.5Ti4O15 (Na0.5Sm0.5Bi4Ti4O15) lead-free ceramics via a conventional solid-state technique. Investigations of Na0.5Bi4.5Ti4O15 (NBT) and Na0.5Sm0.5Bi4.5Ti4O15 (NSBT) ceramics were demonstrated in detail to understand the composition-based structure-property of Aurivillius compounds and related functional material. Dielectric properties for frequency and temperature in a wide range were analyzed. The conduction activation energy values of NSBT ceramics are obtained to be 1.40 eV, whereas, the NBT ceramics get the value to be 1.31 eV. At higher temperatures, the conduction activation energy value of NSBT ceramics is 1.32 eV for both frequencies of 100 Hz and 1 kHz, whereas, for NBT compounds, the calculated value is 1.27 eV for both frequencies. The simulation performed on the impedance data for capacitive and resistance elements shows well-fitting curves which indicates a single relaxation behavior in the material. Similarly, the AC-conductivity data were analyzed which gives different conduction processes and relaxation activation energies in the NSBT ceramics.

8.
Sci Rep ; 13(1): 21828, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071245

RESUMO

This work focused on the novel symmetrical left-handed split ring resonator metamaterial for terahertz frequency applications. A compact substrate material known as Silicon with a dimension of 5 µm was adopted in this research investigation. Moreover, several parameter studies were investigated, such as clockwise rotation, array and layer structure designs, larger-scale metamaterials, novel design structure comparisons and electric field distribution analysis. Meanwhile, two types of square-shaped metamaterial designs were proposed in this work. The proposed designs exhibit double and single resonance frequencies respectively, likely at 3.32 and 9.24 THz with magnitude values of - 16.43 and - 17.33 for the first design, while the second design exhibits a response at 3.03 THz with a magnitude value of - 19.90. Moreover, the verification of these results by adopting High-frequency Structure Simulator software indicates only slight discrepancies which are less than 5%. Furthermore, the initial response of the proposed designs was successfully altered by simply rotating the design clockwise or even increasing the dimension of the design. For instance, the first resonance frequency is shifted to the lower band when the first proposed design was rotated 90°. On the other hand, by increasing the size of the metamaterial, more than nine resonance frequencies were gained in each symmetric design. Furthermore, the symmetric metamaterial with a similar width and length of 10 µm dimension was adopted for both design structures to construct an equivalent circuit model by utilising Advanced Design System software. Finally, both unit cell designs were utilised to explore the absorption performances which exhibit four and five peak points. Overall, the altering behaviour by changing physical properties and compact design with acceptable responses become one of the novelties of this research investigation. In a nutshell, the proposed designs can be utilised in terahertz frequency which gives optimistic or advantageous feedback and is relatively suitable for the adopted frequency range.

9.
Materials (Basel) ; 16(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36837252

RESUMO

We created an ultra-thin, triple-band incident angle-insensitive perfect metamaterial absorber (MMA) with a metallic patch and a continuous metal ground isolated by a central dielectric substrate. The top metallic patch, placed across the edges of the 0.58 mm thickness Rogers RO4003C (lossy) substrate, forms the bulk of the projected absorber's ultra-thin layer. Nonetheless, absorption is exceedingly strong, covering C-band, X-band and K-band and reaching levels of 97.8%, 99.9%, and 99.9%, respectively, under normal and even oblique (0° to 45°) incident conditions. In chosen ranges of frequency of 6.24, 10.608, and 18.624 GHz for both TM and TE mode, the displayed Q-factors were 62.4, 17.68, and 26.61, respectively. We correspondingly calculated the RAB (relative absorption bandwidth) to evaluate absorption performance. An equivalent circuit proved its performance capabilities, indicating that it would produce a high-quality MMA from ADS software. Furthermore, the absorber's performance has been verified in free space on a sample being tested using a different array of unit cells. Moreover, the proposed structures with HFSS simulators to display the MMA's absolute absorption at each absorption peak are somewhat inconsistent with the results of the CST simulator. Because of its superior performance, the ultra-thin absorber is suited for a wide range of applications, including satellite applications such as radar systems, stealth technology, imaging, and electromagnetic interference reduction.

10.
Nanomaterials (Basel) ; 13(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37368312

RESUMO

Perfect metamaterial absorber (PMA) is an attractive optical wavelength absorber with potential solar energy and photovoltaic applications. Perfect metamaterials used as solar cells can improve efficiency by amplifying incident solar waves on the PMA. This study aims to assess a wide-band octagonal PMA for a visible wavelength spectrum. The proposed PMA consists of three layers: nickel, silicon dioxide, and nickel. Based on the simulations, polarisation-insensitive absorption transverse electric (TE) and transverse magnetic (TM) modes were achieved due to symmetry. The proposed PMA structure was subjected to computational simulation using a FIT-based CST simulator. The design structure was again confirmed using FEM-based HFSS to maintain pattern integrity and absorption analysis. The absorption rates of the absorber were estimated at 99.987% and 99.997% for 549.20 THz and 653.2 THz, respectively. The results indicated that the PMA could achieve high absorption peaks in TE and TM modes despite being insensitive to polarisation and the incident angle. Electric field and magnetic field analyses were performed to understand the absorption of the PMA for solar energy harvesting. In conclusion, the PMA possesses outstanding visible frequency absorption, making it a promising option.

11.
Phys Eng Sci Med ; 46(3): 1023-1032, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37219796

RESUMO

Neutrons can be generated in medical linear accelerators (Linac) due to the interaction of high-energy photons (> 10 MeV) with the components of the accelerator head. The generated photoneutrons may penetrate the treatment room if a suitable neutron shield is not used. This causes a biological risk to the patient and occupational workers. The use of appropriate materials in the barriers surrounding the bunker may be effective in preventing the transmission of neutrons from the treatment room to the outside. In addition, neutrons are present in the treatment room due to leakage in the Linac's head. This study aims to reduce the transmission of neutrons from the treatment room by using graphene/hexagonal boron nitride (h-BN) metamaterial as a neutron shielding material. MCNPX code was used to model three layers of graphene/h-BN metamaterial around the target and other components of the linac, and to investigate its effect on the photon spectrum and photoneutrons. Results indicate that the first layer of a graphene/h-BN metamaterial shield around the target improves photon spectrum quality at low energies, whereas the second and third layers have no significant effect. Regarding neutrons, three layers of the metamaterial results in a 50% reduction in the number of neutrons in the air within the treatment room.


Assuntos
Grafite , Humanos , Método de Monte Carlo , Nêutrons , Aceleradores de Partículas
12.
Materials (Basel) ; 16(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37444880

RESUMO

Metamaterial analysis for microwave frequencies is a common practice. However, adopting a multi-layered design is unique in the concept of miniaturisation, thus requiring extensive research for optimal performance. This study focuses on a multi-layered symmetric metamaterial design for C- and X-band applications. All simulation analyses were performed analytically using Computer Simulation Technology Studio Suite 2019. The performances of the proposed metamaterial design were analysed through several parametric studies. Based on the observation, the proposed metamaterial unit cell design manifested resonant frequencies at 7.63 GHz (C-band) and 9.56 GHz (X-band). Moreover, the analysis of effective medium parameters was also included in this study. High-Frequency Simulation 15.0 and Advanced Design System 2020 software validated the transmission coefficient results. Simultaneously, the proposed multi-layered metamaterial design with Rogers RO3006 substrate material exhibited a unique transmission coefficient using double, triple, and quadruple layers. The two resonant frequencies in the unit cell design were successfully increased to three in the double-layer structure at 6.34 GHz (C-band), 8.46 and 11.13 GHz (X-band). The proposed unit cell design was arranged in an array structure to analyse the performance changes in the transmission coefficient. Overall, the proposed metamaterial design accomplished the miniaturisation concept by arranging unit cells in a multi-layer structure and possesses unique properties such as a highly effective medium ratio and left-handed characteristics.

13.
Materials (Basel) ; 16(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37445090

RESUMO

A commercially viable metal-dielectric-metal configured triple-band metamaterial absorber is offered in this paper. It is an aggregation of four compact symmetric circles, with a swastika-shaped metal structure, which are bonded by two split-ring resonators (SRRs). Copper (annealed) of electrical conductivity 5.8 × 107 Sm-1 is used for the ground plate and resonator portion of the top layer and an FR 4 dielectric of permittivity 4.3 is used as a substrate. The structural parameters of the unit cell were determined by a trial and error method. FIT-based 3D simulation software (CST microwave studio, 2019 version was used to characterize the proposed perfect metamaterial absorber (PMA). Three resonance peaks were observed at frequencies 3.03, 5.83 and 7.23 GHz with an absorbance of 99.84%, 99.03% and 98.26%, respectively. The numerical result has been validated by some authentic validation methods. Finally, a microwave network analyzer (PNA) of Agilent N5227 with waveguide ports were deployed for measurement. The simulation and experimental results show better harmony. The proposed PMA has a unique design and a small dimension with higher absorption compared to other contemporary studies. This special type of polarization, insensitive S- and C-band PMA, is designed for a telecommunication system via full-time raw satellite and radar feeds.

14.
Materials (Basel) ; 16(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770037

RESUMO

This work focused on the novel and compact 1-bit symmetrical coding-based metamaterial for radar cross section reduction in terahertz frequencies. A couple of coding particles were constructed to impersonate the elements '0' and '1', which have phase differences of 180°. All the analytical simulations were performed by adopting Computer Simulation Technology Microwave Studio 2019 software. Moreover, the transmission coefficient of the element '1' was examined as well by adopting similar software and validated by a high-frequency structure simulator. Meanwhile, the frequency range from 0 to 3 THz was set in this work. The phase response properties of each element were examined before constructing various coding metamaterial designs in smaller and bigger lattices. The proposed unit cells exhibit phase responses at 0.84 THz and 1.54 THz, respectively. Meanwhile, the analysis of various coding sequences was carried out and they manifest interesting monostatic and bistatic radar cross section (RCS) reduction performances. The Coding Sequence 2 manifests the best bistatic RCS reduction values in smaller lattices, which reduced from -69.8 dBm2 to -65.5 dBm2 at 1.54 THz. On the other hand, the monostatic RCS values for all lattices have an inclined line until they reach a frequency of 1.0 THz from more than -60 dBm2. However, from the 1.0 THz to 3.0 THz frequency range the RCS values have moderate discrepancies among the horizontal line for each lattice. Furthermore, two parametric studies were performed to examine the RCS reduction behaviour, for instance, multi-layer structures and as well tilt positioning of the proposed coding metamaterial. Overall it indicates that the integration of coding-based metamaterial successfully reduced the RCS values.

15.
Materials (Basel) ; 16(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37374587

RESUMO

This study assesses quad-band metamaterial perfect absorbers (MPAs) based on a double X-shaped ring resonator for electromagnetic interference (EMI) shielding applications. EMI shielding applications are primarily concerned with the shielding effectiveness values where the resonance is uniformly or non-sequentially modulated depending on the reflection and absorption behaviour. The proposed unit cell consists of double X-shaped ring resonators, a dielectric substrate of Rogers RT5870 with 1.575 mm thickness, a sensing layer, and a copper ground layer. The presented MPA yielded maximum absorptions of 99.9%, 99.9%, 99.9%, and 99.8% at 4.87 GHz, 7.49 GHz, 11.78 GHz, and 13.09 GHz resonance frequencies for the transverse electric (TE) and transverse magnetic (TM) modes at a normal polarisation angle. When the electromagnetic (EM) field with the surface current flow was investigated, the mechanisms of quad-band perfect absorption were revealed. Moreover, the theoretical analysis indicated that the MPA provides a shielding effectiveness of more than 45 dB across all bands in both TE and TM modes. An analogous circuit demonstrated that it could yield superior MPAs using the ADS software. Based on the findings, the suggested MPA is anticipated to be valuable for EMI shielding purposes.

16.
Materials (Basel) ; 16(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770144

RESUMO

A split-ring resonator (SRR)-based power tiller wheel-shaped quad-band ℇ-negative metamaterial is presented in this research article. This is a new compact metamaterial with a high effective medium ratio (EMR) designed with three modified octagonal split-ring resonators (OSRRs). The electrical dimension of the proposed metamaterial (MM) unit cell is 0.086λ × 0.086λ, where λ is the wavelength calculated at the lowest resonance frequency of 2.35 GHz. Dielectric RT6002 materials of standard thickness (1.524 mm) were used as a substrate. Computer simulation technology (CST) Microwave Studio simulator shows four resonance peaks at 2.35, 7.72, 9.23 and 10.68 GHz with magnitudes of -43.23 dB -31.05 dB, -44.58 dB and -31.71 dB, respectively. Moreover, negative permittivity (ℇ) is observed in the frequency ranges of 2.35-3.01 GHz, 7.72-8.03 GHz, 9.23-10.02 GHz and 10.69-11.81 GHz. Additionally, a negative refractive index is observed in the frequency ranges of 2.36-3.19 GHz, 7.74-7.87 GHz, 9.26-10.33 GHz and 10.70-11.81 GHz, with near-zero permeability noted in the environments of these frequency ranges. The medium effectiveness indicator effective medium ratio (EMR) of the proposed MM is an estimated 11.61 at the lowest frequency of 2.35 GHz. The simulated results of the anticipated structure are validated by authentication processes such as array orientation, HFSS and ADS for an equivalent electrical circuit model. Given its high EMR and compactness in dimensions, the presented metamaterial can be used in S-, C- and X-band wireless communication applications.

17.
Nanomaterials (Basel) ; 13(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446459

RESUMO

A basic urea technique was successfully used to synthesize Mg/Al-Layered double hydroxides (Mg/Al LDHs), which were then calcined at 400 °C to form Mg/Al-Layered double oxides (Mg/Al LDOs). To reconstruct LDHs, Mg/Al LDOs were fabricated with different feeding ratios of Ni by the co-precipitation method. After synthesis, the Ni/Mg/Al-layered double hydroxides (NMA-LDHs) with 20% and 30% Ni (S1 and S2) were roasted at 400 °C and transformed into corresponding Ni/Mg/Al-layered double oxides (NMA-LDOs) (S1a and S2b, respectively). The physiochemical properties of synthesized samples were also evaluated by various characterization techniques, such as X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR), and Brunauer, Emmett, and Teller (BET). The adsorption behavior of methyl orange (MO) onto the synthesized samples was evaluated in batch adsorption mode under varying conditions of contact time, adsorbent quantity, and solution pH. As the dosage amount increased from 0.01-0.04 g, the removal percentage of MO dye also increased from 83% to 90% for S1, 84% to 92% for S1a, 77% to 87% for S2, and 93% to 98% for S2b, respectively. For all of the samples, the adsorption kinetics were well described by the pseudo-second-order kinetic model. The equilibrium adsorption data were well fitted to both Langmuir and Freundlich models for methyl orange (MO). Finally, three adsorption-desorption cycles show that NMA-LDHs and NMA-LDOs have greater adsorption and reusability performance for MO dye, signifying that the design and fabrication strategy can facilitate the application of the natural hydrotalcite material in water remediation.

18.
Sci Rep ; 12(1): 1803, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110653

RESUMO

This research study introduces a multi-layered square-shaped metamaterial (MSM) structure for the electromagnetic (EM) absorption reduction in wireless mobile devices. Usually, wireless devices, for example, a cellular phone emits radiofrequency (RF) energy to the surroundings when used it. Moreover, fast-growing wireless communication technologies that support cellular data networks have also motivated this study. Hence, the focus of the research was to reduce the Specific Absorption Rate (SAR) for the Sub-6 frequency range by designing a multi-layered and compact, 10 × 10mm2 sized metamaterial structure that can be attached inside a mobile phone by avowing any overlapping with existing parts. Overall, six distinct square-shaped metamaterials were constructed on 0.25 mm thick Rogers RO3006 substrate material to reach the target of this investigation. Furthermore, numerical simulations of the proposed metamaterial electromagnetic properties and SAR reduction values were performed by adopting Computer Simulation Technology (CST) Microwave Studio 2019 software. From these simulations, the proposed MSM structure exhibited multi-band resonance frequencies accurately at 1.200, 1.458, 1.560, 1.896 GHz (at L-band), 2.268, 2.683 2.940, 3.580 GHz (at S-band) and 5.872 GHz (at C-band). Simultaneously, the proposed MSM structure was simulated in High-Frequency Structure Simulator (HFSS) to authenticate the numerical simulation data. The comparison of simulation data shows that only the primary and last resonance frequencies were reduced by 0.02 and 0.012 GHz, whereas the rest of the frequencies were increased by 0.042, 0.030, 0.040, 0.032, 0.107, 0.080, and 0.020 GHz in sequential order. In addition, the introduced MSM structure manifests left-handed behaviour at all the resonance frequencies. Nevertheless, the highest recorded SAR values were 98.136% and 98.283% at 1.560 GHz for 1 g and 10 g of tissue volumes. In conclusion, the proposed MSM met the objectives of this research study and can be employed in EM absorption reduction applications.

19.
Micromachines (Basel) ; 13(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35457882

RESUMO

Development of satellite and radar applications has been continuously studied to reach the demand in the recent communication technology. In this study, a new oval-square-shaped split-ring resonator with left-handed metamaterial properties was developed for C-band and X-band applications. The proposed metamaterial was fabricated on 9 × 9 × 0.508 mm3 size of Rogers RO4003C substrate. The proposed metamaterial structure was designed and simulated using Computer Simulation Technique (CST) Microwave Studio with the frequency ranging between 0 to 12 GHz. The simulated result of the proposed design indicated dual resonance frequency at 5.52 GHz (C-band) and 8.81 GHz (X-band). Meanwhile, the experimental result of the proposed design demonstrated dual resonance frequency at 5.53 GHz (C-band) and 8.31 GHz (X-band). Therefore, with a slight difference in the dual resonance frequency, the simulated result corresponded to the experimental result. Additionally, the proposed design exhibited the ideal properties of electromagnetic which is left-handed metamaterial (LHM) behavior. Hence, the metamaterial structure is highly recommended for satellite and radar applications.

20.
Sci Rep ; 12(1): 10958, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768459

RESUMO

Despite their widespread use for performing advanced electromagnetic properties, metamaterial suffers from several restrictions in this technological era. Generally, technology affects the way individuals communicate, learn, think and plays an important role in society today. For this reason, there has been a surge of interest in a coding metamaterial field that possesses the ability to manipulate electromagnetic waves and realize different functionalities. This research work investigates circular-shaped coding metamaterial for microwave frequency applications through several analyses. First, the 1-bit coding metamaterial that is made up of only "0" and "1" elements with 0 and π phase responses by adopting two types of unit cells such as square-shaped Rogers RT6002 substrate material with and without metamaterial structure were analysed in this work. The proposed element '1' successfully manifests several more than 180○ phase responses at several frequency ranges, for instance, 7.35 to 9.48 GHz, 12.87 to 14.25 GHz and 17.49 to 18 GHz (C, X, and Ku-bands), respectively. Besides that, three types of coding sequences were proposed and the radar cross-section (RCS) reduction values of the designs were numerically calculated by utilising Computer Simulation Technology (CST) software. Meanwhile, the single-layered coding metamaterial with 6 lattices was compared with double and triple-layered metamaterial structures. At 2 GHz, the triple-layered structure exhibit reduced RCS values with near to - 30 dBm2 for all coding sequences. Therefore, the transmission coefficient results of the triple-layered coding metamaterial sequences were numerically calculated. Several advanced coding metamaterial designs were constructed and the properties were discussed in terms of RCS values and scattering patterns. Meanwhile, the scattering and effective medium parameters of the unit cell metamaterial structure were also analysed in this work. In a nutshell, the 1-bit coding metamaterial in a controlled sequence can control electromagnetic waves and realize different functionalities.


Assuntos
Radar , Software , Simulação por Computador , Humanos , Micro-Ondas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA