Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 31(1): 82-91, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177670

RESUMO

The NLR family caspase activation and recruitment domain-containing 4 (NLRC4) inflammasome is a critical cytosolic innate immune machine formed upon the direct sensing of bacterial infection and in response to cell stress during sterile chronic inflammation. Despite its major role in instigating the subsequent host immune response, a more complete understanding of the molecular events in the formation of the NLRC4 inflammasome in humans is lacking. Here we identify Bacillus thailandensis type III secretion system needle protein (Needle) as a potent trigger of the human NLR family apoptosis inhibitory protein (NAIP)/NLRC4 inflammasome complex formation and determine its structural features by cryogenic electron microscopy. We also provide a detailed understanding of how type III secretion system pathogen components are sensed by human NAIP to form a cascade of NLRC4 protomer through a critical lasso-like motif, a 'lock-key' activation model and large structural rearrangement, ultimately forming the full human NLRC4 inflammasome. These results shed light on key regulatory mechanisms specific to the NLRC4 inflammasome assembly, and the innate immune modalities of pathogen sensing in humans.


Assuntos
Inflamassomos , Sistemas de Secreção Tipo III , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Flagelina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Proteína Inibidora de Apoptose Neuronal/metabolismo
2.
J Clin Invest ; 134(11)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652550

RESUMO

The immune system can control cancer progression. However, even though some innate immune sensors of cellular stress are expressed intrinsically in epithelial cells, their potential role in cancer aggressiveness and subsequent overall survival in humans is mainly unknown. Here, we show that nucleotide-binding oligomerization domain-like receptor (NLR) family CARD domain-containing 4 (NLRC4) is downregulated in epithelial tumor cells of patients with colorectal cancer (CRC) by using spatial tissue imaging. Strikingly, only the loss of tumor NLRC4, but not stromal NLRC4, was associated with poor immune infiltration (mainly DCs and CD4+ and CD8+ T cells) and accurately predicted progression to metastatic stage IV and decrease in overall survival. By combining multiomics approaches, we show that restoring NLRC4 expression in human CRC cells triggered a broad inflammasome-independent immune reprogramming consisting of type I interferon (IFN) signaling genes and the release of chemokines and myeloid growth factors involved in the tumor infiltration and activation of DCs and T cells. Consistently, such reprogramming in cancer cells was sufficient to directly induce maturation of human DCs toward a Th1 antitumor immune response through IL-12 production in vitro. In multiple human carcinomas (colorectal, lung, and skin), we confirmed that NLRC4 expression in patient tumors was strongly associated with type I IFN genes, immune infiltrates, and high microsatellite instability. Thus, we shed light on the epithelial innate immune sensor NLRC4 as a therapeutic target to promote an efficient antitumor immune response against the aggressiveness of various carcinomas.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Proteínas de Ligação ao Cálcio , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Interferon Tipo I , Transdução de Sinais , Feminino , Humanos , Masculino , Proteínas de Ligação ao Cálcio/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA