Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Cell Physiol ; 238(1): 227-241, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477412

RESUMO

The elimination of transformed and viral infected cells by natural killer (NK) cells requires a specialized junction between NK and target cells, denominated immunological synapse (IS). After initial recognition, the IS enables the directed secretion of lytic granules content into the susceptible target cell. The lymphocyte function-associated antigen (LFA)-1 regulates NK effector function by enabling NK-IS assembly and maturation. The pathways underlying LFA-1 accumulation at the IS in NK cells remained uncharacterized. A kinase anchoring protein 350 (AKAP350) is a centrosome/Golgi-associated protein, which, in T cells, participates in LFA-1 activation by mechanisms that have not been elucidated. We first evaluated AKAP350 participation in NK cytolytic activity. Our results showed that the decrease in AKAP350 levels by RNA interference (AKAP350KD) inhibited NK-YTS cytolytic activity, without affecting conjugate formation. The impairment of NK effector function in AKAP350KD cells correlated with decreased LFA-1 clustering and defective IS maturation. AKAP350KD cells that were exclusively activated via LFA-1 showed impaired LFA-1 organization and deficient lytic granule translocation as well. In NK AKAP350KD cells, activation signaling through Vav1 was preserved up to 10 min of interaction with target cells, but significantly decreased afterwards. Experiments in YTS and in ex vivo NK cells identified an intracellular pool of LFA-1, which partially associated with the Golgi apparatus and, upon NK activation, redistributed to the IS in an AKAP350-dependent manner. The analysis of Golgi organization indicated that the decrease in AKAP350 expression led to the disruption of the Golgi integrity in NK cells. Alteration of Golgi function by BFA treatment or AKAP350 delocalization from this organelle also led to impaired LFA-1 localization at the IS. Therefore, this study characterizes AKAP350 participation in the modulation of NK effector function, revealing the existence of a Golgi-dependent trafficking pathway for LFA-1, which is relevant for LFA-1 organization at NK-lytic IS.


Assuntos
Proteínas de Ancoragem à Quinase A , Sinapses Imunológicas , Células Matadoras Naturais , Antígeno-1 Associado à Função Linfocitária , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Centrossomo/metabolismo , Citotoxicidade Imunológica , Antígeno-1 Associado à Função Linfocitária/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Células Matadoras Naturais/metabolismo
2.
Liver Int ; 41(7): 1677-1693, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33641248

RESUMO

BACKGROUND AND AIMS: Non-alcoholic fatty liver (NAFLD) and its more serious form non-alcoholic steatohepatitis increase risk of hepatocellular carcinoma (HCC). Lipid metabolic alterations and its role in HCC development remain unclear. SPARC (Secreted Protein, Acidic and Rich in Cysteine) is involved in lipid metabolism, NAFLD and diabetes, but the effects on hepatic lipid metabolism and HCC development is unknown. The aim of this study was to evaluate the role of SPARC in HCC development in the context of NAFLD. METHODS: Primary hepatocyte cultures from knockout (SPARC-/- ) or wild-type (SPARC+/+ ) mice, and HepG2 cells were used to assess the effects of free fatty acids on lipid accumulation, expression of lipogenic genes and de novo triglyceride (TG) synthesis. A NAFLD-HCC model was stabilized on SPARC-/- or SPARC+/+ mice. Correlations among SPARC, lipid metabolism-related gene expression patterns and clinical prognosis were studied using HCC gene expression dataset. RESULTS: SPARC-/- mice increases hepatic lipid deposits over time. Hepatocytes from SPARC-/- mice or inhibition of SPARC by an antisense adenovirus in HepG2 cells resulted in increased TG deposit, expression of lipid-related genes and nuclear translocation of SREBP1c. Human HCC database analysis revealed that SPARC negatively correlated with genes involved in lipid metabolism, and with poor survival. In NAFLD-HCC murine model, the absence of SPARC accelerates HCC development. RNA-seq study revealed that pathways related to lipid metabolism, cellular detoxification and proliferation were upregulated in SPARC-/- tumour-bearing mice. CONCLUSIONS: The absence of SPARC is associated with an altered hepatic lipid metabolism, and an accelerated NAFLD-related HCC development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Osteonectina/genética , Osteonectina/metabolismo
3.
J Cell Physiol ; 233(2): 1468-1480, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28548701

RESUMO

Most epithelial cells contain apical membrane structures associated to bundles of actin filaments, which constitute the brush border. Whereas microtubule participation in the maintenance of the brush border identity has been characterized, their contribution to de novo microvilli organization remained elusive. Hereby, using a cell model of individual enterocyte polarization, we found that nocodazole induced microtubule depolymerization prevented the de novo brush border formation. Microtubule participation in brush border actin organization was confirmed in polarized kidney tubule MDCK cells. We also found that centrosome, but not Golgi derived microtubules, were essential for the initial stages of brush border development. During this process, microtubule plus ends acquired an early asymmetric orientation toward the apical membrane, which clearly differs from their predominant basal orientation in mature epithelia. In addition, overexpression of the microtubule plus ends associated protein CLIP170, which regulate actin nucleation in different cell contexts, facilitated brush border formation. In combination, the present results support the participation of centrosomal microtubule plus ends in the activation of the polarized actin organization associated to brush border formation, unveiling a novel mechanism of microtubule regulation of epithelial polarity.


Assuntos
Colo/fisiologia , Enterócitos/fisiologia , Células Epiteliais/fisiologia , Rim/fisiologia , Microtúbulos/fisiologia , Microvilosidades/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Polaridade Celular , Centrômero/fisiologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/ultraestrutura , Cães , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/ultraestrutura , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Humanos , Rim/efeitos dos fármacos , Rim/ultraestrutura , Células Madin Darby de Rim Canino , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Nocodazol/farmacologia , Fatores de Tempo , Moduladores de Tubulina/farmacologia
4.
J Cell Sci ; 128(17): 3277-89, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26208639

RESUMO

The acquisition of a migratory phenotype is central in processes as diverse as embryo differentiation and tumor metastasis. An early event in this phenomenon is the generation of a nucleus-centrosome-Golgi back-to-front axis. AKAP350 (also known as AKAP9) is a Golgi and centrosome scaffold protein that is involved in microtubule nucleation. AKAP350 interacts with CIP4 (also known as TRIP10), a cdc42 effector that regulates actin dynamics. The present study aimed to characterize the participation of centrosomal AKAP350 in the acquisition of migratory polarity, and the involvement of CIP4 in the pathway. The decrease in total or in centrosomal AKAP350 led to decreased formation of the nucleus-centrosome-Golgi axis and defective cell migration. CIP4 localized at the centrosome, which was enhanced in migratory cells, but inhibited in cells with decreased centrosomal AKAP350. A decrease in the CIP4 expression or inhibition of the CIP4-AKAP350 interaction also led to defective cell polarization. Centrosome positioning, but not nuclear movement, was affected by loss of CIP4 or AKAP350 function. Our results support a model in which AKAP350 recruits CIP4 to the centrosome, providing a centrosomal scaffold to integrate microtubule and actin dynamics, thus enabling centrosome polarization and ensuring cell migration directionality.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Centrossomo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Proteínas do Citoesqueleto/genética , Cães , Complexo de Golgi/genética , Células Hep G2 , Humanos , Células Madin Darby de Rim Canino , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Antígenos de Histocompatibilidade Menor
5.
J Cell Physiol ; 227(1): 160-71, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21374596

RESUMO

Hepatocytes are epithelial cells whose apical poles constitute the bile canaliculi. The establishment and maintenance of canalicular poles is a finely regulated process that dictates the efficiency of primary bile secretion. Protein kinase A (PKA) modulates this process at different levels. AKAP350 is an A-kinase anchoring protein that scaffolds protein complexes involved in modulating the dynamic structures of the Golgi apparatus and microtubule cytoskeleton, facilitating microtubule nucleation at this organelle. In this study, we evaluated whether AKAP350 is involved in the development of bile canaliculi-like structures in hepatocyte derived HepG2 cells. We found that AKAP350 recruits PKA to the centrosomes and Golgi apparatus in HepG2 cells. De-localization of AKAP350 from these organelles led to reduced apical cell polarization. A decrease in AKAP350 expression inhibited the formation of canalicular structures and impaired F-actin organization at canalicular poles. Furthermore, loss of AKAP350 expression led to diminished polarized expression of the p-glycoprotein (MDR1/ABCB1) at the apical "canalicular" membrane. AKAP350 knock down effects on canalicular structures formation and actin organization could be mimicked by inhibition of Golgi microtubule nucleation by depletion of CLIP associated proteins (CLASPs). Our data reveal that AKAP350 participates in mechanisms which determine the development of canalicular structures as well as accurate canalicular expression of distinct proteins and actin organization, and provide evidence on the involvement of Golgi microtubule nucleation in hepatocyte apical polarization.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Canalículos Biliares/metabolismo , Canalículos Biliares/ultraestrutura , Polaridade Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Imunofluorescência , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Células Hep G2 , Humanos , Immunoblotting , Microscopia Confocal , Microscopia de Fluorescência
6.
Apoptosis ; 17(5): 475-91, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22270152

RESUMO

Glucose deprivation entails oxidative stress and apoptosis in diverse cell types. Liver tissue shows high tolerance to nutritional stress, however regulation of survival in normal hepatocytes subjected to glucose restriction is unclear. We assessed the survival response of cultured hepatocytes subjected to glucose deprivation and analyzed the putative participation of protein kinase A (PKA) in this response. Six hours glucose deprivation induced a PKA dependent activation of apoptosis in cultured hepatocytes, without having an impact on non apoptotic death. Apoptotic activation associated to glucose restriction was secondary to an imbalance in cellular reactive oxygen species (ROS). In this condition, PKA inhibition led to an early prevention in mitochondrial ROS production and a late increase in scavenging enzymes transcript levels. These results supported the hypothesis that PKA could modulate glucose deprivation induced apoptotic activation by conditioning mitochondrial ROS production during glucose fasting. We presented additional evidence sustaining this model: First, glucose withdrawal led to a 95% increase in mitochondrial cAMP levels in cultured hepatocytes; second, activation of PKA significantly augmented hepatic mitochondrial ROS generation, whereas PKA inhibition elicited the opposite effect. Mitochondrial PKA signaling, previously proposed as an autonomic pathway adjusting respiration rate, emerges as a mechanism of controlling cell survival during glucose restriction.


Assuntos
Apoptose , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucose/deficiência , Hepatócitos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Caspase 3/metabolismo , Catalase/genética , Catalase/metabolismo , Sobrevivência Celular , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Citocromos c/metabolismo , Citosol/metabolismo , Hepatócitos/enzimologia , Isoquinolinas/farmacologia , L-Lactato Desidrogenase/metabolismo , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo , Transporte Proteico , Ratos , Ratos Wistar , Transdução de Sinais , Sulfonamidas/farmacologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Proteína X Associada a bcl-2/metabolismo
7.
Mol Genet Metab ; 105(2): 186-92, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22192525

RESUMO

The survival response to glucose limitation in eukaryotic cells involves different signaling pathways highly conserved from yeasts to mammals. Upon nutritional restriction, a network driven by kinases such as the AMP dependent protein kinase (AMPK/Snf1), the Target of Rapamycin kinase (TOR), the Protein kinases A (PKA) or B (PKB/Akt) control stress defenses, cell cycle regulators, pro and anti apoptotic proteins, respiratory complexes, etc. In this work we review the state of the art in this scenario of kinase pathways, i.e. their principal effectors and links, both in yeasts and mammals. We also focus in downstream actors such as sirtuins and the Forkhead box class O transcription factors. Besides, we particularly analyze the participation of these kinases on the balance of Reactive Oxygen Species and their role in the regulation of survival during glucose deprivation. Key results on yeast stationary phase survival and the contribution of such genetics studies are discussed.


Assuntos
Sobrevivência Celular , Células Eucarióticas/metabolismo , Glucose/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Animais , Apoptose , Mamíferos , Saccharomyces cerevisiae , Transdução de Sinais
8.
Biochimie ; 177: 127-131, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32841682

RESUMO

A-kinase anchoring protein 350 (AKAP350) is a centrosomal/Golgi scaffold protein, critical for the regulation of microtubule dynamics. AKAP350 recruits end-binding protein 1 (EB1) to the centrosome in mitotic cells, ensuring proper spindle orientation in epithelial cells. AKAP350 also interacts with p150glued, the main component of the dynactin complex. In the present work, we found that AKAP350 localized p150glued to the spindle poles, facilitating p150glued/EB1 interaction at these structures. Our results further showed that the decrease in AKAP350 expression reduced p150glued localization at astral microtubules and impaired the elongation of astral microtubules during anaphase. Overall, this study provides mechanistic data on how microtubule regulatory proteins gather to define microtubule dynamics in mitotic cells.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Complexo Dinactina/fisiologia , Polos do Fuso/metabolismo , Animais , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Cães , Células Madin Darby de Rim Canino , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Polos do Fuso/ultraestrutura
9.
Sci Rep ; 9(1): 2815, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30809021

RESUMO

Hepatocellular carcinoma (HCC) is a highly metastatic cancer with very poor prognosis. AMP activated kinase (AMPK) constitutes a candidate to inhibit HCC progression. First, AMPK is downregulated in HCC. Second, glucose starvation induces apoptosis in HCC cells via AMPK. Correspondingly, metformin activates AMPK and inhibits HCC cell proliferation. Nevertheless, the effect of AMPK activation on HCC cell invasiveness remains elusive. Here, migration/invasion was studied in HCC cells exposed to metformin and glucose starvation. Cell viability, proliferation and differentiation, as well as AMPK and PKA activation were analyzed. In addition, invasiveness in mutants of the AMPKα activation loop was assessed. Metformin decreased cell migration, invasion and epithelial-mesenchymal transition, and interference with AMPKα expression avoided metformin actions. Those antitumor effects were potentiated by glucose deprivation. Metformin activated AMPK at the same time that inhibited PKA, and both effects were enhanced by glucose starvation. Given that AMPKα(S173) phosphorylation by PKA decreases AMPK activation, we hypothesized that the reduction of PKA inhibitory effect by metformin could explain the increased antitumor effects observed. Supporting this, in AMPK activating conditions, cell migration/invasion was further impaired in AMPKα(S173C) mutant cells. Metformin emerges as a strong inhibitor of migration/invasion in HCC cells, and glucose restriction potentiates this effect.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Hepatocelular/fisiopatologia , Movimento Celular , Glucose/metabolismo , Neoplasias Hepáticas/fisiopatologia , Metformina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Invasividade Neoplásica
10.
Cancer Lett ; 461: 65-77, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31319138

RESUMO

CDC42 interacting protein 4 (CIP4) is a CDC42 effector that coordinates membrane deformation and actin polymerization. The correlation of CIP4 overexpression with metastatic capacity has been characterized in several types of cancer. However, little information exists on how CIP4 function is regulated. CIP4 interacts with A-kinase (PKA) anchoring protein 350 (AKAP350) and CIP4 is also a PKA substrate. Here, we identified CIP4 T225 as the major CIP4 PKA phosphorylation site. In vitro and in vivo experiments using hepatocellular carcinoma (HCC) and breast cancer cells showed that expression of a CIP4(T225E) phosphomimetic mutant increased cancer cell metastatic capacity and that, conversely, expression of a CIP4(T225A) non-phosphorylatable mutant reduced invasive properties. PKA inhibition decreased to CIP4(T225A) cell-levels control but not CIP4(T225E) cell migratory and invasive efficiency. Concomitantly, our studies indicate that CIP4 T225 phosphorylation promotes the formation of functional invadopodia and enhances CIP4 localization at these structures. Our findings further provide mechanistic data indicating that CIP4 T225 phosphorylation facilitates CIP4 interaction with CDC42. Altogether this study identifies a signaling pathway that involves CIP4 phosphorylation by PKA during the acquisition of a metastatic phenotype in cancer cells.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Hepatocelular/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Proteínas Associadas aos Microtúbulos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Animais , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Proteínas Associadas aos Microtúbulos/genética , Antígenos de Histocompatibilidade Menor/genética , Invasividade Neoplásica , Fosforilação , Podossomos/metabolismo , Podossomos/patologia , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína cdc42 de Ligação ao GTP/metabolismo
11.
Free Radic Biol Med ; 45(10): 1446-56, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18804161

RESUMO

Chronological aging in yeast resembles aging in mammalian, postmitotic tissues. Such chronological aging begins with entrance into the stationary phase after the nutrients are exhausted. Many changes in metabolism take place at this moment, and survival in this phase strongly depends on oxidative-stress resistance. In this study, hypo- and hyperglycogenic phenotypes of Saccharomyces cerevisiae strains with deletions of carbohydrate-metabolism enzymes were selected, and a comparison of their chronological longevities was made. Stress sensitivity, ROS, and apoptosis markers during aging were analyzed in the emerged candidates. Among the strains that accumulated greater amounts of glycogen, the deletion of glycogen phosphorylase, gph1delta, was unique in showing a shortened life span, stress intolerance, and higher levels of ROS during its survival. The transcription of superoxide dismutase genes during survival was three- to fourfold lower in gph1delta. Extra copies of SOD1/2 counteracted the stress sensitivity and the accelerated aging of gph1delta. In conclusion, the lack of gph1 produced a rapidly aging strain, which could be attributed, at least in part, to the weakened stress resistance associated with the decreased expression of both SODs. Gph1p seems to be a candidate in a scenario that could link early metabolic changes with other targets of the stress response during stationary-phase survival.


Assuntos
Glicogênio Fosforilase/deficiência , Glicogênio Fosforilase/genética , Estresse Oxidativo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Apoptose/fisiologia , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Tempo
12.
Sci Rep ; 7(1): 14894, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097729

RESUMO

The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mapas de Interação de Proteínas , Polos do Fuso/metabolismo , Animais , Técnicas de Cultura de Células , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Células Madin Darby de Rim Canino , Mitose , Polos do Fuso/ultraestrutura
13.
Oncotarget ; 7(14): 17815-28, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26894973

RESUMO

The signaling pathways that govern survival response in hepatic cancer cells subjected to nutritional restriction have not been clarified yet. In this study we showed that liver cancer cells undergoing glucose deprivation both arrested in G0/G1 and died mainly by apoptosis. Treatment with the AMPK activator AICAR phenocopied the effect of glucose deprivation on cell survival, whereas AMPK silencing in HepG2/C3A, HuH-7 or SK-Hep-1 cells blocked the cell cycle arrest and the increase in apoptotic death induced by glucose starvation. Both AMPK and PKA were promptly activated after glucose withdrawal. PKA signaling had a dual role during glucose starvation: whereas it elicited an early decreased in cell viability, it later improved this parameter. We detected AMPK phosphorylation (AMPKα(Ser173)) by PKA, which was increased in glucose starved cells and was associated with diminution of AMPK activation. To better explore this inhibitory effect, we constructed a hepatocarcinoma derived cell line which stably expressed an AMPK mutant lacking that PKA phosphorylation site: AMPKα1(S173C). Expression of this mutant significantly decreased viability in cells undergoing glucose starvation. Furthermore, after 36 h of glucose deprivation, the index of AMPKα1(S173C) apoptotic cells doubled the apoptotic index observed in control cells. Two main remarks arise: 1. AMPK is the central signaling kinase in the scenario of cell cycle arrest and death induced by glucose starvation in hepatic cancer cells; 2. PKA phosphorylation of Ser173 comes out as a strong control point that limits the antitumor effects of AMPK in this situation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Hepatocelular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucose/deficiência , Neoplasias Hepáticas/metabolismo , Apoptose/fisiologia , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Glucose/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Transdução de Sinais
14.
FEBS Lett ; 546(1): 127-32, 2003 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12829248

RESUMO

Traditionally, glycogen synthase (GS) has been considered to catalyze the key step of glycogen synthesis and to exercise most of the control over this metabolic pathway. However, recent advances have shown that other factors must be considered. Moreover, the control of glycogen deposition does not follow identical mechanisms in muscle and liver. Glucose must be phosphorylated to promote activation of GS. Glucose-6-phosphate (Glc-6-P) binds to GS, causing the allosteric activation of the enzyme probably through a conformational rearrangement that simultaneously converts it into a better substrate for protein phosphatases, which can then lead to the covalent activation of GS. The potency of Glc-6-P for activation of liver GS is determined by its source, since Glc-6-P arising from the catalytic action of glucokinase (GK) is much more effective in mediating the activation of the enzyme than the same metabolite produced by hexokinase I (HK I). As a result, hepatic glycogen deposition from glucose is subject to a system of control in which the 'controller', GS, is in turn controlled by GK. In contrast, in skeletal muscle, the control of glycogen synthesis is shared between glucose transport and GS. The characteristics of the two pairs of isoenzymes, liver GS/GK and muscle GS/HK I, and the relationships that they establish are tailored to suit specific metabolic roles of the tissues in which they are expressed. The key enzymes in glycogen metabolism change their intracellular localization in response to glucose. The changes in the intracellular distribution of liver GS and GK triggered by glucose correlate with stimulation of glycogen synthesis. The translocation of GS, which constitutes an additional mechanism of control, causes the orderly deposition of hepatic glycogen and probably represents a functional advantage in the metabolism of the polysaccharide.


Assuntos
Glicogênio Hepático/metabolismo , Animais , Células Cultivadas , Ativação Enzimática , Glucoquinase/metabolismo , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Glicogênio Sintase/química , Glicogênio Sintase/metabolismo , Hepatócitos/enzimologia , Hexoquinase/metabolismo , Humanos , Isoenzimas/metabolismo , Modelos Biológicos , Músculo Esquelético/enzimologia
15.
Cell Logist ; 3(1): e26331, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24475373

RESUMO

AKAP350 (AKAP450/AKAP9/CG-NAP) is an A-kinase anchoring protein, which recruits multiple signaling proteins to the Golgi apparatus and the centrosomes. Several proteins recruited to the centrosomes by this scaffold participate in the regulation of the cell cycle. Previous studies indicated that AKAP350 participates in centrosome duplication. In the present study we specifically assessed the role of AKAP350 in the progression of the cell cycle. Our results showed that interference with AKAP350 expression inhibits G1/S transition, decreasing the initiation of both DNA synthesis and centrosome duplication. We identified an AKAP350 carboxyl-terminal domain (AKAP350CTD), which contained the centrosomal targeting domain of AKAP350 and induced the initiation of DNA synthesis. Nevertheless, AKAP350CTD expression did not induce centrosomal duplication. AKAP350CTD partially delocalized endogenous AKAP350 from the centrosomes, but increased the centrosomal levels of the cyclin-dependent kinase 2 (Cdk2). Accordingly, the expression of this AKAP350 domain increased the endogenous phosphorylation of nucleophosmin by Cdk2, which occurs at the G1/S transition and is a marker of the centrosomal activity of the cyclin E-Cdk2 complex. Cdk2 recruitment to the centrosomes is a necessary event for the development of the G1/S transition. Altogether, our results indicate that AKAP350 facilitates the initiation of DNA synthesis by scaffolding Cdk2 to the centrosomes, and enabling its specific activity at this organelle. Although this mechanism could also be involved in AKAP350-dependent modulation of centrosomal duplication, it is not sufficient to account for this process.

16.
J Biol Chem ; 278(11): 9740-6, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12519761

RESUMO

Glucose 6-phosphate (Glc-6-P) produced in cultured hepatocytes by direct phosphorylation of glucose or by gluconeogenesis from dihydroxyacetone (DHA) was equally effective in activating glycogen synthase (GS). However, glycogen accumulation was higher in hepatocytes incubated with glucose than in those treated with DHA. This difference was attributed to decreased futile cycling through GS and glycogen phosphorylase (GP) in the glucose-treated hepatocytes, owing to the partial inactivation of GP induced by glucose. Our results indicate that the gluconeogenic pathway and the glucokinase-mediated phosphorylation of glucose deliver their common product to the same Glc-6-P pool, which is accessible to liver GS. As observed in the treatment with glucose, incubation of cultured hepatocytes with DHA caused the translocation of GS from a uniform cytoplasmic distribution to the hepatocyte periphery and a similar pattern of glycogen deposition. We hypothesize that Glc-6-P has a major role in glycogen metabolism not only by determining the activation state of GS but also by controlling its subcellular distribution in the hepatocyte.


Assuntos
Glucoquinase/metabolismo , Glucose-6-Fosfato/biossíntese , Glicogênio Sintase/metabolismo , Fígado/enzimologia , Adenoviridae/genética , Animais , Western Blotting , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática , Glucose/metabolismo , Glicogênio/metabolismo , Glicogênio Fosforilase/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Microscopia de Fluorescência , Fosforilação , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA