Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Blood ; 143(24): 2544-2558, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38518106

RESUMO

ABSTRACT: Acute hyperhemolysis is a severe life-threatening complication in patients with sickle cell disease (SCD) that may occur during delayed hemolytic transfusion reaction (DHTR), or vaso-occlusive crises associated with multiorgan failure. Here, we developed in vitro and in vivo animal models to mimic endothelial damage during the early phase of hyperhemolysis in SCD. We then used the carbon monoxide (CO)-releasing molecule CORM-401 and examined its effects against endothelial activation, damage, and inflammation inflicted by hemolysates containing red blood cell membrane-derived particles. The in vitro results revealed that CORM-401: (1) prevented the upregulation of relevant proinflammatory and proadhesion markers controlled by the NF-κB enhancer of activated B cells, and (2) abolished the expression of the nuclear factor erythroid-2-related factor 2 (Nrf2) that regulates the inducible antioxidant cell machinery. We also show in SCD mice that CORM-401 protects against hemolysate-induced acute damage of target organs such as the lung, liver, and kidney through modulation of NF-κB proinflammatory and Nrf2 antioxidant pathways. Our data demonstrate the efficacy of CORM-401 as a novel therapeutic agent to counteract hemolysate-induced organ damage during hyperhemolysis in SCD. This approach might be considered as possible preventive treatment in high-risk situations such as patients with SCD with history of DHTR.


Assuntos
Anemia Falciforme , Monóxido de Carbono , Hemólise , Fator 2 Relacionado a NF-E2 , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/complicações , Animais , Camundongos , Monóxido de Carbono/farmacologia , Humanos , Hemólise/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Administração Oral , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL
2.
Haematologica ; 109(6): 1918-1932, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105727

RESUMO

Inflammatory vasculopathy is critical in sickle cell disease (SCD)-associated organ damage. An imbalance between pro-inflammatory and pro-resolving mechanisms in response to different triggers such as hypoxia/reoxygenation or infections has been proposed to contribute to the progression of SCD. Administration of specialized pro-resolving lipid mediators may provide an effective therapeutic strategy to target inflammatory vasculopathy and to modulate inflammatory response. Epeleuton (15 hydroxy eicosapentaenoic acid ethyl ester) is a novel, orally administered, second-generation ω-3 fatty acid with a favorable clinical safety profile. In this study we show that epeleuton re-programs the lipidomic pattern of target organs for SCD towards a pro-resolving pattern. This protects against systemic and local inflammatory responses and improves red cell features, resulting in reduced hemolysis and sickling compared with that in vehicle-treated SCD mice. In addition, epeleuton prevents hypoxia/reoxygenation-induced activation of nuclear factor-κB with downregulation of the NLRP3 inflammasome in lung, kidney, and liver. This was associated with downregulation of markers of vascular activation in epeleuton-treated SCD mice when compared to vehicle-treated animals. Collectively our data support the potential therapeutic utility of epeleuton and provide the rationale for the design of clinical trials to evaluate the efficacy of epeleuton in patients with SCD.


Assuntos
Anemia Falciforme , Modelos Animais de Doenças , Traumatismo por Reperfusão , Animais , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Anemia Falciforme/complicações , Camundongos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Humanos , Masculino , Hipóxia/metabolismo , Hipóxia/tratamento farmacológico
3.
Curr Opin Hematol ; 30(3): 93-98, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36853806

RESUMO

PURPOSE OF REVIEW: In red cells, pyruvate kinase is a key enzyme in the final step of glycolytic degradative process, which generates a constant energy supply via ATP production. This commentary discusses recent findings on pyruvate kinase activators as new therapeutic option in hereditary red cell disorders such as thalassemic syndromes or sickle cell disease (SCD). RECENT FINDINGS: Mitapivat and etavopivat are two oral pyruvate kinase activators. Studies in a mouse model for ß thalassemia have shown beneficial effects of mitapivat on both red cell survival and ineffective erythropoiesis, with an amelioration of iron homeostasis. This was confirmed in a proof-of-concept study in patients with nontransfusion-dependent thalassemias. Both mitapivat and etavopivat have been evaluated in mouse models for SCD, showing an increased 2-3DPG/ATP ratio and a reduction in haemolysis as well as in sickling. These data were confirmed in proof-of-concept clinical studies with both molecules carried in patients with SCD. SUMMARY: Preclinical and clinical evidence indicate that pyruvate kinase activators represent new therapeutic option in hemoglobinopathies or SCD. Other red cell disorders such as hereditary spherocytosis or hereditary anaemias characterized by defective erythropoiesis might represent additional areas to investigate the therapeutic impact of pyruvate kinase activators.


Assuntos
Anemia Falciforme , Doenças Hematológicas , Camundongos , Animais , Humanos , Piruvato Quinase , Eritrócitos , Trifosfato de Adenosina
4.
Haematologica ; 108(5): 1335-1348, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36700398

RESUMO

Cardiomyopathy deeply affects quality of life and mortality of patients with b-thalassemia or with transfusion-dependent myelodysplastic syndromes. Recently, a link between Nrf2 activity and iron metabolism has been reported in liver ironoverload murine models. Here, we studied C57B6 mice as healthy control and nuclear erythroid factor-2 knockout (Nrf2-/-) male mice aged 4 and 12 months. Eleven-month-old wild-type and Nrf2-/- mice were fed with either standard diet or a diet containing 2.5% carbonyl-iron (iron overload [IO]) for 4 weeks. We show that Nrf2-/- mice develop an age-dependent cardiomyopathy, characterized by severe oxidation, degradation of SERCA2A and iron accumulation. This was associated with local hepcidin expression and increased serum non-transferrin-bound iron, which promotes maladaptive cardiac remodeling and interstitial fibrosis related to overactivation of the TGF-b pathway. When mice were exposed to IO diet, the absence of Nrf2 was paradoxically protective against further heart iron accumulation. Indeed, the combination of prolonged oxidation and the burst induced by IO diet resulted in activation of the unfolded protein response (UPR) system, which in turn promotes hepcidin expression independently from heart iron accumulation. In the heart of Hbbth3/+ mice, a model of b-thalassemia intermedia, despite the activation of Nrf2 pathway, we found severe protein oxidation, activation of UPR system and cardiac fibrosis independently from heart iron content. We describe the dual role of Nrf2 when aging is combined with IO and its novel interrelation with UPR system to ensure cell survival. We open a new perspective for early and intense treatment of cardiomyopathy in patients with b-thalassemia before the appearance of heart iron accumulation.


Assuntos
Cardiomiopatias , Sobrecarga de Ferro , Talassemia , Animais , Masculino , Camundongos , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Hepcidinas , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Qualidade de Vida , Talassemia/complicações , Talassemia/genética , Talassemia/metabolismo
5.
Haematologica ; 107(11): 2650-2660, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35443560

RESUMO

Sickle cell disease (SCD) is an inherited red blood cell disorder that occurs worldwide. Acute vaso-occlusive crisis is the main cause of hospitalization in patients with SCD. There is growing evidence that inflammatory vasculopathy plays a key role in both acute and chronic SCD-related clinical manifestations. In a humanized mouse model of SCD, we found an increase of von Willebrand factor activity and a reduction in the ratio of a disintegrin and metalloproteinase with thrombospondin type 1 motif, number 13 (ADAMTS13) to von Willebrand factor activity similar to that observed in the human counterpart. Recombinant ADAMTS13 was administered to humanized SCD mice before they were subjected to hypoxia/reoxygenation (H/R) stress as a model of vaso-occlusive crisis. In SCD mice, recombinant ADAMTS13 reduced H/R-induced hemolysis and systemic and local inflammation in lungs and kidneys. It also diminished H/R-induced worsening of inflammatory vasculopathy, reducing local nitric oxidase synthase expression. Collectively, our data provide for the firsttime evidence that pharmacological treatment with recombinant ADAMTS13 (TAK-755) diminished H/R-induced sickle cell-related organ damage. Thus, recombinant ADAMTS13 might be considered as a potential effective disease-modifying treatment option for sickle cell-related acute events.


Assuntos
Proteína ADAMTS13 , Anemia Falciforme , Doenças Vasculares , Animais , Humanos , Camundongos , Proteína ADAMTS13/uso terapêutico , Anemia Falciforme/complicações , Anemia Falciforme/tratamento farmacológico , Modelos Animais de Doenças , Eritrócitos Anormais , Hipóxia , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/etiologia , Fator de von Willebrand , Proteínas Recombinantes/uso terapêutico
6.
Blood ; 133(3): 252-265, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30404812

RESUMO

Resolvins (Rvs), endogenous lipid mediators, play a key role in the resolution of inflammation. Sickle cell disease (SCD), a genetic disorder of hemoglobin, is characterized by inflammatory and vaso-occlusive pathologies. We document altered proresolving events following hypoxia/reperfusion in humanized SCD mice. We demonstrate novel protective actions of 17R-resolvin D1 (17R-RvD1; 7S, 8R, 17R-trihydroxy-4Z, 9E, 11E, 13Z, 15E, 19Z-docosahexaenoic acid) in reducing ex vivo human SCD blood leukocyte recruitment by microvascular endothelial cells and in vivo neutrophil adhesion and transmigration. In SCD mice exposed to hypoxia/reoxygenation, oral administration of 17R -RvD1 reduces systemic/local inflammation and vascular dysfunction in lung and kidney. The mechanism of action of 17R-RvD1 involves (1) enhancement of SCD erythrocytes and polymorphonuclear leukocyte efferocytosis, (2) blunting of NF-κB activation, and (3) a reduction in inflammatory cytokines, vascular activation markers, and E-selectin expression. Thus, 17R-RvD1 might represent a new therapeutic strategy for the inflammatory vasculopathy of SCD.


Assuntos
Anemia Falciforme/complicações , Anti-Inflamatórios não Esteroides/administração & dosagem , Ácidos Docosa-Hexaenoicos/administração & dosagem , Nefropatias/prevenção & controle , Pneumonia/prevenção & controle , Animais , Citocinas/metabolismo , Humanos , Nefropatias/etiologia , Nefropatias/patologia , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Pneumonia/etiologia , Pneumonia/patologia
7.
Am J Hematol ; 94(1): 10-20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252956

RESUMO

The signaling cascade induced by the interaction of erythropoietin (EPO) with its receptor (EPO-R) is a key event of erythropoiesis. We present here data indicating that Fyn, a Src-family-kinase, participates in the EPO signaling-pathway, since Fyn-/- mice exhibit reduced Tyr-phosphorylation of EPO-R and decreased STAT5-activity. The importance of Fyn in erythropoiesis is also supported by the blunted responsiveness of Fyn-/- mice to stress erythropoiesis. Fyn-/- mouse erythroblasts adapt to reactive oxygen species (ROS) by activating the redox-related-transcription-factor Nrf2. However, since Fyn is a physiologic repressor of Nrf2, absence of Fyn resulted in persistent-activation of Nrf2 and accumulation of nonfunctional proteins. ROS-induced over-activation of Jak2-Akt-mTOR-pathway and repression of autophagy with perturbation of lysosomal-clearance were also noted. Treatment with Rapamycin, a mTOR-inhibitor and autophagy activator, ameliorates Fyn-/- mouse baseline erythropoiesis and erythropoietic response to oxidative-stress. These findings identify a novel multimodal action of Fyn in the regulation of normal and stress erythropoiesis.


Assuntos
Eritropoese/fisiologia , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Animais , Autofagia , Doxorrubicina/toxicidade , Eritroblastos/enzimologia , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Feminino , Janus Quinase 2/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Fenil-Hidrazinas/toxicidade , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-fyn/deficiência , Proteínas Proto-Oncogênicas c-fyn/genética , Espécies Reativas de Oxigênio , Receptores da Eritropoetina/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
10.
Haematologica ; 100(7): 870-80, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934765

RESUMO

The anemia of sickle cell disease is associated with a severe inflammatory vasculopathy and endothelial dysfunction, which leads to painful and life-threatening clinical complications. Growing evidence supports the anti-inflammatory properties of ω-3 fatty acids in clinical models of endothelial dysfunction. Promising but limited studies show potential therapeutic effects of ω-3 fatty acid supplementation in sickle cell disease. Here, we treated humanized healthy and sickle cell mice for 6 weeks with ω-3 fatty acid diet (fish-oil diet). We found that a ω-3 fatty acid diet: (i) normalizes red cell membrane ω-6/ω-3 ratio; (ii) reduces neutrophil count; (iii) decreases endothelial activation by targeting endothelin-1 and (iv) improves left ventricular outflow tract dimensions. In a hypoxia-reoxygenation model of acute vaso-occlusive crisis, a ω-3 fatty acid diet reduced systemic and local inflammation and protected against sickle cell-related end-organ injury. Using isolated aortas from sickle cell mice exposed to hypoxia-reoxygenation, we demonstrated a direct impact of a ω-3 fatty acid diet on vascular activation, inflammation, and anti-oxidant systems. Our data provide the rationale for ω-3 dietary supplementation as a therapeutic intervention to reduce vascular dysfunction in sickle cell disease.


Assuntos
Anemia Falciforme/dietoterapia , Anti-Inflamatórios/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Modelos Animais de Doenças , Endotelina-1/antagonistas & inibidores , Endotelina-1/biossíntese , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/patologia , Humanos , Hipóxia/dietoterapia , Hipóxia/metabolismo , Hipóxia/patologia , Camundongos , Camundongos Transgênicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Oxigênio/efeitos adversos
11.
Antioxidants (Basel) ; 13(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38671902

RESUMO

Aging is characterized by increased oxidation and reduced efficiency of cytoprotective mechanisms. Nuclear factor erythroid-2-related factor (Nrf2) is a key transcription factor, controlling the expression of multiple antioxidant proteins. Here, we show that Nrf2-/- mice displayed an age-dependent anemia, due to the combined contributions of reduced red cell lifespan and ineffective erythropoiesis, suggesting a role of Nrf2 in erythroid biology during aging. Mechanistically, we found that the expression of antioxidants during aging is mediated by activation of Nrf2 function by peroxiredoxin-2. The absence of Nrf2 resulted in persistent oxidation and overactivation of adaptive systems such as the unfolded protein response (UPR) system and autophagy in Nrf2-/- mouse erythroblasts. As Nrf2 is involved in the expression of autophagy-related proteins such as autophagy-related protein (Atg) 4-5 and p62, we found impairment of late phase of autophagy in Nrf2-/- mouse erythroblasts. The overactivation of the UPR system and impaired autophagy drove apoptosis of Nrf2-/- mouse erythroblasts via caspase-3 activation. As a proof of concept for the role of oxidation, we treated Nrf2-/- mice with astaxanthin, an antioxidant, in the form of poly (lactic-co-glycolic acid) (PLGA)-loaded nanoparticles (ATS-NPs) to improve its bioavailability. ATS-NPs ameliorated the age-dependent anemia and decreased ineffective erythropoiesis in Nrf2-/- mice. In summary, we propose that Nrf2 plays a key role in limiting age-related oxidation, ensuring erythroid maturation and growth during aging.

12.
J Thromb Haemost ; 21(2): 269-275, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36700507

RESUMO

BACKGROUND: Sickle cell disease (SCD) is an inherited red blood cell disorder with a causative substitution in the beta-globin gene that encodes beta-globin in hemoglobin. Furthermore, the ensuing vasculopathy in the microvasculature involves heightened endothelial cell adhesion, inflammation, and coagulopathy, all of which contribute to vaso-occlusive crisis (VOC) and the sequelae of SCD. In particular, dysregulation of the von Willebrand factor (VWF) and a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13 (ADAMTS13) axis has been implicated in human SCD pathology. OBJECTIVES: To investigate the beneficial potential of treatment with recombinant ADAMTS13 (rADAMTS13) to alleviate VOC. METHODS: Pharmacologic treatment with rADAMTS13 in vitro or in vivo was performed in a humanized mouse model of SCD that was exposed to hypoxia/reoxygenation stress as a model of VOC. Then, pharmacokinetic, pharmacodynamic, and behavioral analyses were performed. RESULTS: Administration of rADAMTS13 to SCD mice dose-dependently increased plasma ADAMTS13 activity, reduced VWF activity/antigen ratios, and reduced baseline hemolysis (free hemoglobin and total bilirubin) within 24 hours. rADAMTS13 was administered in SCD mice, followed by hypoxia/reoxygenation stress, and reduced VWF activity/antigen ratios in parallel to significantly (p < .01) improved recovery during the reoxygenation phase. Consistent with the results in SCD mice, we demonstrate in a human in vitro system that treatment with rADAMTS13 counteracts the inhibitory activity of hemoglobin on the VWF/ADAMTS13-axis. CONCLUSION: Collectively, our data provide evidence that relative ADAMTS13 insufficiency in SCD mice is corrected by pharmacologic treatment with rADAMTS13 and provides an effective disease-modifying approach in a human SCD mouse model.


Assuntos
Anemia Falciforme , Doenças Vasculares , Compostos Orgânicos Voláteis , Humanos , Animais , Camundongos , Fator de von Willebrand/metabolismo , Anemia Falciforme/tratamento farmacológico , Hemólise , Proteína ADAMTS13/genética
13.
Hemasphere ; 7(3): e848, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36874380

RESUMO

Drug repurposing is a valuable strategy for rare diseases. Sickle cell disease (SCD) is a rare hereditary hemolytic anemia accompanied by acute and chronic painful episodes, most often in the context of vaso-occlusive crisis (VOC). Although progress in the knowledge of pathophysiology of SCD have allowed the development of new therapeutic options, a large fraction of patients still exhibits unmet therapeutic needs, with persistence of VOCs and chronic disease progression. Here, we show that imatinib, an oral tyrosine kinase inhibitor developed for the treatment of chronic myelogenous leukemia, acts as multimodal therapy targeting signal transduction pathways involved in the pathogenesis of both anemia and inflammatory vasculopathy of humanized murine model for SCD. In addition, imatinib inhibits the platelet-derived growth factor-B-dependent pathway, interfering with the profibrotic response to hypoxia/reperfusion injury, used to mimic acute VOCs. Our data indicate that imatinib might be considered as possible new therapeutic tool for chronic treatment of SCD.

14.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37676741

RESUMO

Hereditary spherocytosis (HS) is the most common, nonimmune, hereditary, chronic hemolytic anemia after hemoglobinopathies. The genetic defects in membrane function causing HS lead to perturbation of the RBC metabolome, with altered glycolysis. In mice genetically lacking protein 4.2 (4.2-/-; Epb42), a murine model of HS, we showed increased expression of pyruvate kinase (PK) isoforms in whole and fractioned RBCs in conjunction with abnormalities in the glycolytic pathway and in the glutathione (GSH) system. Mitapivat, a PK activator, metabolically reprogrammed 4.2-/- mouse RBCs with amelioration of glycolysis and the GSH cycle. This resulted in improved osmotic fragility, reduced phosphatidylserine positivity, amelioration of RBC cation content, reduction of Na/K/Cl cotransport and Na/H-exchange overactivation, and decrease in erythroid vesicles release in vitro. Mitapivat treatment significantly decreased erythrophagocytosis and beneficially affected iron homeostasis. In mild-to-moderate HS, the beneficial effect of splenectomy is still controversial. Here, we showed that splenectomy improves anemia in 4.2-/- mice and that mitapivat is noninferior to splenectomy. An additional benefit of mitapivat treatment was lower expression of markers of inflammatory vasculopathy in 4.2-/- mice with or without splenectomy, indicating a multisystemic action of mitapivat. These findings support the notion that mitapivat treatment should be considered for symptomatic HS.


Assuntos
Anemia Hemolítica , Esferocitose Hereditária , Animais , Camundongos , Modelos Animais de Doenças , Esferocitose Hereditária/genética , Esferocitose Hereditária/metabolismo , Eritrócitos/metabolismo , Anemia Hemolítica/genética , Anemia Hemolítica/metabolismo
15.
Antioxidants (Basel) ; 10(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070133

RESUMO

Sickle cell disease (SCD) is a genetic disorder of hemoglobin, leading to chronic hemolytic anemia and multiple organ damage. Among chronic organ complications, sickle cell bone disease (SBD) has a very high prevalence, resulting in long-term disability, chronic pain and fractures. Here, we evaluated the effects of ω-3 (fish oil-based, FD)-enriched diet vs. ω-6 (soybean oil-based, SD)- supplementation on murine SBD. We exposed SCD mice to recurrent hypoxia/reoxygenation (rec H/R), a consolidated model for SBD. In rec H/R SS mice, FD improves osteoblastogenesis/osteogenic activity by downregulating osteoclast activity via miR205 down-modulation and reduces both systemic and local inflammation. We also evaluated adipogenesis in both AA and SS mice fed with either SD or FD and exposed to rec H/R. FD reduced and reprogramed adipogenesis from white to brown adipocyte tissue (BAT) in bone compartments. This was supported by increased expression of uncoupling protein 1(UCP1), a BAT marker, and up-regulation of miR455, which promotes browning of white adipose tissue. Our findings provide new insights on the mechanism of action of ω-3 fatty acid supplementation on the pathogenesis of SBD and strengthen the rationale for ω-3 fatty acid dietary supplementation in SCD as a complementary therapeutic intervention.

16.
Antioxidants (Basel) ; 11(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35052580

RESUMO

The peroxiredoxins (PRXs) constitute a ubiquitous antioxidant. Growing evidence in neurodegenerative disorders such as Parkinson's disease (PD) or Alzheimer's disease (AD) has highlighted a crucial role for PRXs against neuro-oxidation. Chorea-acanthocytosis/Vps13A disease (ChAc) is a devastating, life-shortening disorder characterized by acanthocytosis, neurodegeneration and abnormal proteostasis. We recently developed a Vps13a-/- ChAc-mouse model, showing acanthocytosis, neurodegeneration and neuroinflammation which could be restored by LYN inactivation. Here, we show in our Vps13a-/- mice protein oxidation, NRF2 activation and upregulation of downstream cytoprotective systems NQO1, SRXN1 and TRXR in basal ganglia. This was associated with upregulation of PRX2/5 expression compared to wild-type mice. PRX2 expression was age-dependent in both mouse strains, whereas only Vps13a-/- PRX5 expression was increased independent of age. LYN deficiency or nilotinib-mediated LYN inhibition improved autophagy in Vps13a-/- mice. In Vps13a-/-; Lyn-/- basal ganglia, absence of LYN resulted in reduced NRF2 activation and down-regulated expression of PRX2/5, SRXN1 and TRXR. Nilotinib treatment of Vps13a-/- mice reduced basal ganglia oxidation, and plasma PRX5 levels, suggesting plasma PRX5 as a possible ChAc biomarker. Our data support initiation of therapeutic Lyn inhibition as promptly as possible after ChAc diagnosis to minimize development of irreversible neuronal damage during otherwise inevitable ChAc progression.

17.
J Pers Med ; 11(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068769

RESUMO

Chorea-acanthocytosis (ChAc) is a neurodegenerative disease caused by mutations in the VPS13A gene. It is characterized by several neurological symptoms and the appearance of acanthocytes. Elevated tyrosine kinase Lyn activity has been recently identified as one of the key pathophysiological mechanisms in this disease, and therefore represents a promising drug target. Methods: We evaluated an individual off-label treatment with the tyrosine kinase inhibitor dasatinib (100 mg/d, 25.8-50.4 weeks) of three ChAc patients. Alongside thorough safety monitoring, we assessed motor and non-motor scales (e.g., MDS-UPDRS, UHDRS, quality of life) as well as routine and experimental laboratory parameters (e.g., serum neurofilament, Lyn kinase activity, actin cytoskeleton in red blood cells). Results: Dasatinib appeared to be reasonably safe. The clinical parameters remained stable without significant improvement or deterioration. Regain of deep tendon reflexes was observed in one patient. Creatine kinase, serum neurofilament levels, and acanthocyte count did not reveal consistent effects. However, a reduction of initially elevated Lyn kinase activity and accumulated autophagy markers, as well as a partial restoration of the actin cytoskeleton, was found in red blood cells. Conclusions: We report on the first treatment approach with disease-modifying intention in ChAc. The experimental parameters indicate target engagement in red blood cells, while clinical effects on the central nervous system could not be proven within a rather short treatment time. Limited knowledge on the natural history of ChAc and the lack of appropriate biomarkers remain major barriers for "clinical trial readiness". We suggest a panel of outcome parameters for future clinical trials in ChAc.

18.
Antioxidants (Basel) ; 10(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535382

RESUMO

Peroxiredoxin-2 (Prx2) is the third most abundant cytoplasmic protein in red blood cells. Prx2 belongs to a well-known family of antioxidants, the peroxiredoxins (Prxs), that are widely expressed in mammalian cells. Prx2 is a typical, homodimeric, 2-Cys Prx that uses two cysteine residues to accomplish the task of detoxifying a vast range of organic peroxides, H2O2, and peroxynitrite. Although progress has been made on functional characterization of Prx2, much still remains to be investigated on Prx2 post-translational changes. Here, we first show that Prx2 is Tyrosine (Tyr) phosphorylated by Syk in red cells exposed to oxidation induced by diamide. We identified Tyr-193 in both recombinant Prx2 and native Prx2 from red cells as a specific target of Syk. Bioinformatic analysis suggests that phosphorylation of Tyr-193 allows Prx2 conformational change that is more favorable for its peroxidase activity. Indeed, Syk-induced Tyr phosphorylation of Prx2 enhances in vitro Prx2 activity, but also contributes to Prx2 translocation to the membrane of red cells exposed to diamide. The biologic importance of Tyr-193 phospho-Prx2 is further supported by data on red cells from a mouse model of humanized sickle cell disease (SCD). SCD is globally distributed, hereditary red cell disorder, characterized by severe red cell oxidation due to the pathologic sickle hemoglobin. SCD red cells show Tyr-phosphorylated Prx2 bound to the membrane and increased Prx2 activity when compared to healthy erythrocytes. Collectively, our data highlight the novel link between redox related signaling and Prx2 function in normal and diseased red cells.

19.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33822774

RESUMO

Anemia in ß-thalassemia is related to ineffective erythropoiesis and reduced red cell survival. Excess free heme and accumulation of unpaired α-globin chains impose substantial oxidative stress on ß-thalassemic erythroblasts and erythrocytes, impacting cell metabolism. We hypothesized that increased pyruvate kinase activity induced by mitapivat (AG-348) in the Hbbth3/+ mouse model for ß-thalassemia would reduce chronic hemolysis and ineffective erythropoiesis through stimulation of red cell glycolytic metabolism. Oral mitapivat administration ameliorated ineffective erythropoiesis and anemia in Hbbth3/+ mice. Increased ATP, reduced reactive oxygen species production, and reduced markers of mitochondrial dysfunction associated with improved mitochondrial clearance suggested enhanced metabolism following mitapivat administration in ß-thalassemia. The amelioration of responsiveness to erythropoietin resulted in reduced soluble erythroferrone, increased liver Hamp expression, and diminished liver iron overload. Mitapivat reduced duodenal Dmt1 expression potentially by activating the pyruvate kinase M2-HIF2α axis, representing a mechanism additional to Hamp in controlling iron absorption and preventing ß-thalassemia-related liver iron overload. In ex vivo studies on erythroid precursors from patients with ß-thalassemia, mitapivat enhanced erythropoiesis, promoted erythroid maturation, and decreased apoptosis. Overall, pyruvate kinase activation as a treatment modality for ß-thalassemia in preclinical model systems had multiple beneficial effects in the erythropoietic compartment and beyond, providing a strong scientific basis for further clinical trials.


Assuntos
Ativadores de Enzimas/farmacologia , Hemólise/efeitos dos fármacos , Piperazinas/farmacologia , Piruvato Quinase/metabolismo , Quinolinas/farmacologia , Talassemia beta/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Transgênicos , Talassemia beta/enzimologia , Talassemia beta/genética
20.
Acta Neuropathol Commun ; 9(1): 81, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941276

RESUMO

Chorea-Acanthocytosis (ChAc) is a devastating, little understood, and currently untreatable neurodegenerative disease caused by VPS13A mutations. Based on our recent demonstration that accumulation of activated Lyn tyrosine kinase is a key pathophysiological event in human ChAc cells, we took advantage of Vps13a-/- mice, which phenocopied human ChAc. Using proteomic approach, we found accumulation of active Lyn, γ-synuclein and phospho-tau proteins in Vps13a-/- basal ganglia secondary to impaired autophagy leading to neuroinflammation. Mice double knockout Vps13a-/- Lyn-/- showed normalization of red cell morphology and improvement of autophagy in basal ganglia. We then in vivo tested pharmacologic inhibitors of Lyn: dasatinib and nilotinib. Dasatinib failed to cross the mouse brain blood barrier (BBB), but the more specific Lyn kinase inhibitor nilotinib, crosses the BBB. Nilotinib ameliorates both Vps13a-/- hematological and neurological phenotypes, improving autophagy and preventing neuroinflammation. Our data support the proposal to repurpose nilotinib as new therapeutic option for ChAc patients.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Neuroacantocitose/tratamento farmacológico , Neuroacantocitose/enzimologia , Inibidores de Proteínas Quinases/administração & dosagem , Quinases da Família src/antagonistas & inibidores , Animais , Dasatinibe/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroacantocitose/genética , Pirimidinas/administração & dosagem , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA