Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982752

RESUMO

MOTIVATION: The Oxford Nanopore technology has a great potential for the analysis of methylated motifs in genomes, including whole-genome methylome profiling. However, we found that there are no methylation motifs detection algorithms, which would be sensitive enough and return deterministic results. Thus, the MEME suit does not extract all Helicobacter pylori methylation sites de novo even using the iterative approach implemented in the most up-to-date methylation analysis tool Nanodisco. RESULTS: We present Snapper, a new highly sensitive approach, to extract methylation motif sequences based on a greedy motif selection algorithm. Snapper does not require manual control during the enrichment process and has enrichment sensitivity higher than MEME coupled with Tombo or Nanodisco instruments that was demonstrated on H.pylori strain J99 studied earlier by the PacBio technology and on four external datasets representing different bacterial species. We used Snapper to characterize the total methylome of a new H.pylori strain A45. At least four methylation sites that have not been described for H.pylori earlier were revealed. We experimentally confirmed the presence of a new CCAG-specific methyltransferase and inferred a gene encoding a new CCAAK-specific methyltransferase. AVAILABILITY AND IMPLEMENTATION: Snapper is implemented using Python and is freely available as a pip package named "snapper-ont." Also, Snapper and the demo dataset are available in Zenodo (10.5281/zenodo.10117651).


Assuntos
Genoma Bacteriano , Nanoporos , Metilação de DNA , Metiltransferases/genética , Metiltransferases/metabolismo , Algoritmos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala
2.
BMC Microbiol ; 19(1): 312, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888470

RESUMO

BACKGROUND: Fecal microbiota transplantation (FMT) has been recently approved by FDA for the treatment of refractory recurrent clostridial colitis (rCDI). Success of FTM in treatment of rCDI led to a number of studies investigating the effectiveness of its application in the other gastrointestinal diseases. However, in the majority of studies the effects of FMT were evaluated on the patients with initially altered microbiota. The aim of our study was to estimate effects of FMT on the gut microbiota composition in healthy volunteers and to monitor its long-term outcomes. RESULTS: We have performed a combined analysis of three healthy volunteers before and after capsule FMT by evaluating their general condition, adverse clinical effects, changes of basic laboratory parameters, and several immune markers. Intestinal microbiota samples were evaluated by 16S rRNA gene and shotgun sequencing. The data analysis demonstrated profound shift towards the donor microbiota taxonomic composition in all volunteers. Following FMT, all the volunteers exhibited gut colonization with donor gut bacteria and persistence of this effect for almost ∼1 year of observation. Transient changes of immune parameters were consistent with suppression of T-cell cytotoxicity. FMT was well tolerated with mild gastrointestinal adverse events, however, one volunteer developed a systemic inflammatory response syndrome. CONCLUSIONS: The FMT leads to significant long-term changes of the gut microbiota in healthy volunteers with the shift towards donor microbiota composition and represents a relatively safe procedure to the recipients without long-term adverse events.


Assuntos
Transplante de Microbiota Fecal , Fezes/microbiologia , Microbioma Gastrointestinal , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Fatores de Tempo
3.
Biomedicines ; 12(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38790958

RESUMO

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has significantly impacted global healthcare, underscoring the importance of exploring the virus's effects on infected individuals beyond treatments and vaccines. Notably, recent findings suggest that SARS-CoV-2 can infect the gut, thereby altering the gut microbiota. This study aimed to analyze the gut microbiota composition differences between COVID-19 patients experiencing mild and severe symptoms. We conducted 16S rRNA metagenomic sequencing on fecal samples from 49 mild and 43 severe COVID-19 cases upon hospital admission. Our analysis identified a differential abundance of specific bacterial species associated with the severity of the disease. Severely affected patients showed an association with Enterococcus faecium, Akkermansia muciniphila, and others, while milder cases were linked to Faecalibacterium prausnitzii, Alistipes putredinis, Blautia faecis, and additional species. Furthermore, a network analysis using SPIEC-EASI indicated keystone taxa and highlighted structural differences in bacterial connectivity, with a notable disruption in the severe group. Our study highlights the diverse impacts of SARS-CoV-2 on the gut microbiome among both mild and severe COVID-19 patients, showcasing a spectrum of microbial responses to the virus. Importantly, these findings align, to some extent, with observations from other studies on COVID-19 gut microbiomes, despite variations in methodologies. The findings from this study, based on retrospective data, establish a foundation for future prospective research to confirm the role of the gut microbiome as a predictive biomarker for the severity of COVID-19.

4.
mSystems ; 8(2): e0102322, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36809182

RESUMO

The human gut microbiome plays an important role in both health and disease. Recent studies have demonstrated a strong influence of the gut microbiome composition on the efficacy of cancer immunotherapy. However, available studies have not yet succeeded in finding reliable and consistent metagenomic markers that are associated with the response to immunotherapy. Therefore, the reanalysis of the published data may improve our understanding of the association between the composition of the gut microbiome and the treatment response. In this study, we focused on melanoma-related metagenomic data, which are more abundant than are data from other tumor types. We analyzed the metagenomes of 680 stool samples from 7 studies that were published earlier. The taxonomic and functional biomarkers were selected after comparing the metagenomes of patients showing different treatment responses. The list of selected biomarkers was also validated on additional metagenomic data sets that were dedicated to the influence of fecal microbiota transplantation on the response to melanoma immunotherapy. According to our analysis, the resulting cross-study taxonomic biomarkers included three bacterial species: Faecalibacterium prausnitzii, Bifidobacterium adolescentis, and Eubacterium rectale. 101 groups of genes were identified to be functional biomarkers, including those potentially involved in the production of immune-stimulating molecules and metabolites. Moreover, we ranked the microbial species by the number of genes encoding functionally relevant biomarkers that they contained. Thus, we put together a list of potentially the most beneficial bacteria for immunotherapy success. F. prausnitzii, E. rectale, and three species of bifidobacteria stood out as the most beneficial species, even though some useful functions were also present in other bacterial species. IMPORTANCE In this study, we put together a list of potentially the most beneficial bacteria that were associated with a responsiveness to melanoma immunotherapy. Another important result of this study is the list of functional biomarkers of responsiveness to immunotherapy, which are dispersed among different bacterial species. This result possibly explains the existing irregularities between studies regarding the bacterial species that are beneficial to melanoma immunotherapy. Overall, these findings can be utilized to issue recommendations for gut microbiome correction in cancer immunotherapy, and the resulting list of biomarkers might serve as a good stepping stone for the development of a diagnostic test that is aimed at predicting patients' responses to melanoma immunotherapy.


Assuntos
Melanoma , Microbiota , Humanos , Metagenoma , Melanoma/genética , Microbiota/genética , Bactérias/genética , Biomarcadores , Imunoterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA