Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Allergy ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003594

RESUMO

BACKGROUND: SARS-CoV-2 has triggered a pandemic and contributes to long-lasting morbidity. Several studies have investigated immediate cellular and humoral immune responses during acute infection. However, little is known about long-term effects of COVID-19 on the immune system. METHODS: We performed a longitudinal investigation of cellular and humoral immune parameters in 106 non-vaccinated subjects ten weeks (10 w) and ten months (10 m) after their first SARS-CoV-2 infection. Peripheral blood immune cells were analyzed by multiparametric flow cytometry, serum cytokines were examined by multiplex technology. Antibodies specific for the Spike protein (S), the receptor-binding domain (RBD) and the nucleocapsid protein (NC) were determined. All parameters measured 10 w and 10 m after infection were compared with those of a matched, noninfected control group (n = 98). RESULTS: Whole blood flow cytometric analyses revealed that 10 m after COVID-19, convalescent patients compared to controls had reduced absolute granulocyte, monocyte, and lymphocyte counts, involving T, B, and NK cells, in particular CD3+CD45RA+CD62L+CD31+ recent thymic emigrant T cells and non-class-switched CD19+IgD+CD27+ memory B cells. Cellular changes were associated with a reversal from Th1- to Th2-dominated serum cytokine patterns. Strong declines of NC- and S-specific antibody levels were associated with younger age (by 10.3 years, p < .01) and fewer CD3-CD56+ NK and CD19+CD27+ B memory cells. Changes of T-cell subsets at 10 m such as normalization of effector and Treg numbers, decline of RTE, and increase of central memory T cell numbers were independent of antibody decline pattern. CONCLUSIONS: COVID-19 causes long-term reduction of innate and adaptive immune cells which is associated with a Th2 serum cytokine profile. This may provide an immunological mechanism for long-term sequelae after COVID-19.

2.
Int Arch Allergy Immunol ; 184(9): 914-931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37279717

RESUMO

INTRODUCTION: Cervical scrofulous lymphadenitis due to Mycobacterium avium complex (MAC) in immunocompetent adults is a rare disease. The presence of MAC infections demands meticulous clinical evaluation of patients along with detailed phenotypic and functional evaluation of their immune system including next-generation sequencing (NGS) analyses of target genes. METHODS: Exact clinical histories of the index patients both suffering from retromandibular/cervical scrofulous lymphadenitis were obtained along with phenotypic and functional immunological evaluations of leukocyte populations followed by targeted NGS-based sequencing of candidate genes. RESULTS: Immunological investigations showed normal serum immunoglobulin and complement levels, but lymphopenia, which was caused by significantly reduced CD3+CD4+CD45RO+ memory T-cell and CD19+ B-cell numbers. Despite normal T-cell proliferation to a number of accessory cell-dependent and -independent stimuli, the PBMC of both patients elaborated clearly reduced levels of a number of cytokines, including IFN-γ, IL-10, IL-12p70, IL-1α, IL-1ß, and TNF-α upon TCR-dependent T-cell stimulation with CD3-coated beads but also superantigens. The IFN-γ production deficiency was confirmed for CD3+CD4+ helper and CD4+CD8+ cytotoxic T cells on the single-cell level by multiparametric flow cytometry irrespective of whether PMA/ionomycin-stimulated whole blood cells or gradient-purified PBMC was analyzed. In the female patient L1, targeted NGS-based sequencing revealed a homozygous c.110T>C mutation in the interferon-γ receptor type 1 (IFNGR1) leading to significantly reduced receptor expression on both CD14+ monocytes and CD3+ T cells. Patient S2 presented with normal IFNGR1 expression on CD14+ monocytes but significantly reduced IFNGR1 expression on CD3+ T cells, despite the absence of detectable homozygous mutations in the IFNGR1 itself or disease-related target genes. Exogenous addition of increasing doses of IFN-γ resulted in proper upregulation of high-affinity FcγRI (CD64) on monocytes from patient S2, whereas monocytes from patient L1 showed only partial induction of CD64 expression after incubation with high doses of IFN-γ. CONCLUSION: A detailed phenotypic and functional immunological examination is urgently required to determine the cause of a clinically relevant immunodeficiency, despite detailed genetic analyses.


Assuntos
Linfadenite , Infecção por Mycobacterium avium-intracellulare , Adulto , Humanos , Feminino , Complexo Mycobacterium avium/genética , Complexo Mycobacterium avium/metabolismo , Leucócitos Mononucleares , Infecção por Mycobacterium avium-intracellulare/genética , Infecção por Mycobacterium avium-intracellulare/metabolismo , Citocinas/metabolismo , Linfadenite/metabolismo
3.
Allergy ; 77(11): 3408-3425, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690994

RESUMO

BACKGROUND: Antibody-based tests are available for measuring SARS-CoV-2-specific immune responses but fast T-cell assays remain scarce. Robust T cell-based tests are needed to differentiate specific cellular immune responses after infection from those after vaccination. METHODS: One hundred seventeen individuals (COVID-19 convalescent patients: n = 40; SARS-CoV-2 vaccinees: n = 41; healthy controls: n = 36) were evaluated for SARS-CoV-2-specific cellular immune responses (proliferation, Th1, Th2, Th17, and inflammatory cytokines, activation-induced marker [AIM] expression) by incubating purified peripheral blood mononuclear cells (PBMC) or whole blood (WB) with SARS-CoV-2 peptides (S, N, or M), vaccine antigens (tetanus toxoid, tick borne encephalitis virus) or polyclonal stimuli (Staphylococcal enterotoxin, phytohemagglutinin). RESULTS: N-peptide mix stimulation of WB identified the combination of IL-2 and IL-13 secretion as superior to IFN-γ secretion to discriminate between COVID-19-convalescent patients and healthy controls (p < .0001). Comparable results were obtained with M- or S-peptides, the latter almost comparably recalled IL-2, IFN-γ, and IL-13 responses in WB of vaccinees. Analysis 10 months as opposed to 10 weeks after COVID-19, but not allergic disease status, positively correlated with IL-13 recall responses. WB cytokine responses correlated with cytokine and proliferation responses of PBMC. Antigen-induced neo-expression of the C-type lectin CD69 on CD4+ (p < .0001) and CD8+ (p = .0002) T cells informed best about the SARS-CoV-2 exposure status with additional benefit coming from CD25 upregulation. CONCLUSION: Along with N- and S-peptide-induced IL-2 and CD69 neo-expression, we suggest to include the type 2 cytokine IL-13 as T-cellular recall marker for SARS-CoV-2 specific T-cellular immune responses after infection and vaccination.


Assuntos
COVID-19 , Leucócitos Mononucleares , Humanos , Citocinas/metabolismo , Imunidade Celular , Interleucina-13 , Interleucina-2 , Leucócitos Mononucleares/metabolismo , SARS-CoV-2 , Vacinação
4.
Allergy ; 77(1): 230-242, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453317

RESUMO

BACKGROUND: The determinants of successful humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of critical importance for the design of effective vaccines and the evaluation of the degree of protective immunity conferred by exposure to the virus. As novel variants emerge, understanding their likelihood of suppression by population antibody repertoires has become increasingly important. METHODS: In this study, we analyzed the SARS-CoV-2 polyclonal antibody response in a large population of clinically well-characterized patients after mild and severe COVID-19 using a panel of microarrayed structurally folded and unfolded SARS-CoV-2 proteins, as well as sequential peptides, spanning the surface spike protein (S) and the receptor-binding domain (RBD) of the virus. RESULTS: S- and RBD-specific antibody responses were dominated by immunoglobulin G (IgG), mainly IgG1 , and directed against structurally folded S and RBD and three distinct peptide epitopes in S2. The virus neutralization activity of patients´ sera was highly correlated with IgG antibodies specific for conformational but not sequential RBD epitopes and their ability to prevent RBD binding to its human receptor angiotensin-converting enzyme 2 (ACE2). Twenty percent of patients selectively lacked RBD-specific IgG. Only immunization with folded, but not with unfolded RBD, induced antibodies against conformational epitopes with high virus-neutralizing activity. Conformational RBD epitopes required for protection do not seem to be altered in the currently emerging virus variants. CONCLUSION: These results are fundamental for estimating the protective activity of antibody responses after natural infection or vaccination and for the design of vaccines, which can induce high levels of SARS-CoV-2-neutralizing antibodies conferring sterilizing immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Epitopos , Humanos , Glicoproteína da Espícula de Coronavírus/genética
5.
Allergy ; 76(3): 751-765, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33128792

RESUMO

BACKGROUND: SARS-CoV-2 has triggered a pandemic that is now claiming many lives. Several studies have investigated cellular immune responses in COVID-19-infected patients during disease but little is known regarding a possible protracted impact of COVID-19 on the adaptive and innate immune system in COVID-19 convalescent patients. METHODS: We used multiparametric flow cytometry to analyze whole peripheral blood samples and determined SARS-CoV-2-specific antibody levels against the S-protein, its RBD-subunit, and viral nucleocapsid in a cohort of COVID-19 convalescent patients who had mild disease ~10 weeks after infection (n = 109) and healthy control subjects (n = 98). Furthermore, we correlated immunological changes with clinical and demographic parameters. RESULTS: Even ten weeks after disease COVID-19 convalescent patients had fewer neutrophils, while their cytotoxic CD8+ T cells were activated, reflected as higher HLA-DR and CD38 expression. Multiparametric regression analyses showed that in COVID-19-infected patients both CD3+ CD4+ and CD3+ CD8+ effector memory cells were higher, while CD25+ Foxp3+ T regulatory cells were lower. In addition, both transitional B cell and plasmablast levels were significantly elevated in COVID-19-infected patients. Fever (duration, level) correlated with numbers of central memory CD4+ T cells and anti-S and anti-RBD, but not anti-NC antibody levels. Moreover, a "young immunological age" as determined by numbers of CD3+ CD45RA+ CD62L+ CD31+ recent thymic emigrants was associated with a loss of sense of taste and/or smell. CONCLUSION: Acute SARS-CoV-2 infection leaves protracted beneficial (ie, activation of T cells) and potentially harmful (ie, reduction of neutrophils) imprints in the cellular immune system in addition to induction of specific antibody responses.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Linfócitos/imunologia , Neutrófilos/metabolismo , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , Adulto , Idoso , Convalescença , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA